Papers Containing Keywords(s): 'survey'
The following papers contain search terms that you selected. From the papers listed below, you can navigate to the PDF, the profile page for that working paper, or see all the working papers written by an author. You can also explore tags, keywords, and authors that occur frequently within these papers.
See Working Papers by Tag(s), Keywords(s), Author(s), or Search Text
Click here to search again
Frequently Occurring Concepts within this Search
Viewing papers 1 through 10 of 164
-
Working PaperRevisiting the Unintended Consequences of Ban the Box
August 2025
Working Paper Number:
CES-25-58
Ban-the-Box (BTB) policies intend to help formerly incarcerated individuals find employment by delaying when employers can ask about criminal records. We revisit the finding in Doleac and Hansen (2020) that BTB causes statistical discrimination against minority men. We correct miscoded BTB laws and show that estimates from the Current Population Survey (CPS) remain quantitatively similar, while those from the American Community Survey (ACS) now fail to reject the null hypothesis of no effect of BTB on employment. In contrast to the published estimates, these ACS results are statistically significantly different from the CPS results, indicating a lack of robustness across datasets. We do not find evidence that these differences are due to sample composition or survey weights. There is limited evidence that these divergent results are explained by the different frequencies of these surveys. Differences in sample sizes may also lead to different estimates; the ACS has a much larger sample and more statistical power to detect effects near the corrected CPS estimates.View Full Paper PDF
-
Working PaperA Simulated Reconstruction and Reidentification Attack on the 2010 U.S. Census
August 2025
Working Paper Number:
CES-25-57
For the last half-century, it has been a common and accepted practice for statistical agencies, including the United States Census Bureau, to adopt different strategies to protect the confidentiality of aggregate tabular data products from those used to protect the individual records contained in publicly released microdata products. This strategy was premised on the assumption that the aggregation used to generate tabular data products made the resulting statistics inherently less disclosive than the microdata from which they were tabulated. Consistent with this common assumption, the 2010 Census of Population and Housing in the U.S. used different disclosure limitation rules for its tabular and microdata publications. This paper demonstrates that, in the context of disclosure limitation for the 2010 Census, the assumption that tabular data are inherently less disclosive than their underlying microdata is fundamentally flawed. The 2010 Census published more than 150 billion aggregate statistics in 180 table sets. Most of these tables were published at the most detailed geographic level'individual census blocks, which can have populations as small as one person. Using only 34 of the published table sets, we reconstructed microdata records including five variables (census block, sex, age, race, and ethnicity) from the confidential 2010 Census person records. Using only published data, an attacker using our methods can verify that all records in 70% of all census blocks (97 million people) are perfectly reconstructed. We further confirm, through reidentification studies, that an attacker can, within census blocks with perfect reconstruction accuracy, correctly infer the actual census response on race and ethnicity for 3.4 million vulnerable population uniques (persons with race and ethnicity different from the modal person on the census block) with 95% accuracy. Having shown the vulnerabilities inherent to the disclosure limitation methods used for the 2010 Census, we proceed to demonstrate that the more robust disclosure limitation framework used for the 2020 Census publications defends against attacks that are based on reconstruction. Finally, we show that available alternatives to the 2020 Census Disclosure Avoidance System would either fail to protect confidentiality, or would overly degrade the statistics' utility for the primary statutory use case: redrawing the boundaries of all of the nation's legislative and voting districts in compliance with the 1965 Voting Rights Act.View Full Paper PDF
-
Working PaperLODES Design and Methodology Report: Methodology Version 7
August 2025
Working Paper Number:
CES-25-52
The purpose of this report is to document the important features of Version 7 of the LEHD Origin-Destination Employment Statistics (LODES) processing system. This includes data sources, data processing methodology, confidentiality protection methodology, some quality measures, and a high-level description of the published data. The intended audience for this document includes LODES data users, Local Employment Dynamics (LED) Partnership members, U.S. Census Bureau management, program quality auditors, and current and future research and development staff members.View Full Paper PDF
-
Working PaperEarnings Measurement Error, Nonresponse and Administrative Mismatch in the CPS
July 2025
Working Paper Number:
CES-25-48
Using the Current Population Survey Annual Social and Economic Supplement matched to Social Security Administration Detailed Earnings Records, we link observations across consecutive years to investigate a relationship between item nonresponse and measurement error in the earnings questions. Linking individuals across consecutive years allows us to observe switching from response to nonresponse and vice versa. We estimate OLS, IV, and finite mixture models that allow for various assumptions separately for men and women. We find that those who respond in both years of the survey exhibit less measurement error than those who respond in one year. Our findings suggest a trade-off between survey response and data quality that should be considered by survey designers, data collectors, and data users.View Full Paper PDF
-
Working PaperThe Rural/Urban Volunteering Divide
June 2025
Working Paper Number:
CES-25-42
Are rural residents more likely to volunteer than those living in urban places? Although early sociological theory posited that rural residents were more likely to experience social bonds connecting them to their community, increasing their odds of volunteer engagement, empirical support is limited. Drawing upon the full population of rural and urban respondents to the United States Census Bureau's Current Population Survey (CPS) Volunteering Supplement (2002-2015), we found that rural respondents are more likely to report volunteering compared to urban respondents, although these differences are decreasing over time. Moreover, we found that propensities for rural and urban volunteerism vary based on differences in both individual and place-based characteristics; further, the size of these effects differ across rural and urban places. These findings have important implications for theory and empirical analysis.View Full Paper PDF
-
Working PaperTapping Business and Household Surveys to Sharpen Our View of Work from Home
June 2025
Working Paper Number:
CES-25-36
Timely business-level measures of work from home (WFH) are scarce for the U.S. economy. We review prior survey-based efforts to quantify the incidence and character of WFH and describe new questions that we developed and fielded for the Business Trends and Outlook Survey (BTOS). Drawing on more than 150,000 firm-level responses to the BTOS, we obtain four main findings. First, nearly a third of businesses have employees who work from home, with tremendous variation across sectors. The share of businesses with WFH employees is nearly ten times larger in the Information sector than in Accommodation and Food Services. Second, employees work from home about 1 day per week, on average, and businesses expect similar WFH levels in five years. Third, feasibility aside, businesses' largest concern with WFH relates to productivity. Seven percent of businesses find that onsite work is more productive, while two percent find that WFH is more productive. Fourth, there is a low level of tracking and monitoring of WFH activities, with 70% of firms reporting they do not track employee days in the office and 75% reporting they do not monitor employees when they work from home. These lessons serve as a starting point for enhancing WFH-related content in the American Community Survey and other household surveys.View Full Paper PDF
-
Working PaperThe Design of Sampling Strata for the National Household Food Acquisition and Purchase Survey
February 2025
Working Paper Number:
CES-25-13
The National Household Food Acquisition and Purchase Survey (FoodAPS), sponsored by the United States Department of Agriculture's (USDA) Economic Research Service (ERS) and Food and Nutrition Service (FNS), examines the food purchasing behavior of various subgroups of the U.S. population. These subgroups include participants in the Supplemental Nutrition Assistance Program (SNAP) and the Special Supplemental Nutrition Program for Women, Infants, and Children (WIC), as well as households who are eligible for but don't participate in these programs. Participants in these social protection programs constitute small proportions of the U.S. population; obtaining an adequate number of such participants in a survey would be challenging absent stratified sampling to target SNAP and WIC participating households. This document describes how the U.S. Census Bureau (which is planning to conduct future versions of the FoodAPS survey on behalf of USDA) created sampling strata to flag the FoodAPS targeted subpopulations using machine learning applications in linked survey and administrative data. We describe the data, modeling techniques, and how well the sampling flags target low-income households and households receiving WIC and SNAP benefits. We additionally situate these efforts in the nascent literature on the use of big data and machine learning for the improvement of survey efficiency.View Full Paper PDF
-
Working PaperU.S. Banks' Artificial Intelligence and Small Business Lending: Evidence from the Census Bureau's Annual Business Survey
February 2025
Working Paper Number:
CES-25-07
Utilizing confidential microdata from the Census Bureau's new technology survey (technology module of the Annual Business Survey), we shed light on U.S. banks' use of artificial intelligence (AI) and its effect on their small business lending. We find that the percentage of banks using AI increases from 14% in 2017 to 43% in 2019. Linking banks' AI use to their small business lending, we find that banks with greater AI usage lend significantly more to distant borrowers, about whom they have less soft information. Using an instrumental variable based on banks' proximity to AI vendors, we show that AI's effect is likely causal. In contrast, we do not find similar effects for cloud systems, other types of software, or hardware surveyed by Census, highlighting AI's uniqueness. Moreover, AI's effect on distant lending is more pronounced in poorer areas and areas with less bank presence. Last, we find that banks with greater AI usage experience lower default rates among distant borrowers and charge these borrowers lower interest rates, suggesting that AI helps banks identify creditworthy borrowers at loan origination. Overall, our evidence suggests that AI helps banks reduce information asymmetry with borrowers, thereby enabling them to extend credit over greater distances.View Full Paper PDF
-
Working PaperPotential Bias When Using Administrative Data to Measure the Family Income of School-Aged Children
January 2025
Working Paper Number:
CES-25-03
Researchers and practitioners increasingly rely on administrative data sources to measure family income. However, administrative data sources are often incomplete in their coverage of the population, giving rise to potential bias in family income measures, particularly if coverage deficiencies are not well understood. We focus on the school-aged child population, due to its particular import to research and policy, and because of the unique challenges of linking children to family income information. We find that two of the most significant administrative sources of family income information that permit linking of children and parents'IRS Form 1040 and SNAP participation records'usefully complement each other, potentially reducing coverage bias when used together. In a case study considering how best to measure economic disadvantage rates in the public school student population, we demonstrate the sensitivity of family income statistics to assumptions about individuals who do not appear in administrative data sources.View Full Paper PDF
-
Working PaperCTC and ACTC Participation Results and IRS-Census Match Methodology, Tax Year 2020
December 2024
Working Paper Number:
CES-24-76
The Child Tax Credit (CTC) and Additional Child Tax Credit (ACTC) offer assistance to help ease the financial burden of families with children. This paper provides taxpayer and dollar participation estimates for the CTC and ACTC covering tax year 2020. The estimates derive from an approach that relies on linking the 2021 Current Population Survey Annual Social and Economic Supplement (CPS ASEC) to IRS administrative data. This approach, called the Exact Match, uses survey data to identify CTC/ACTC eligible taxpayers and IRS administrative data to indicate which eligible taxpayers claimed and received the credit. Overall in tax year 2020, eligible taxpayers participated in the CTC and ACTC program at a rate of 93 percent while dollar participation was 91 percent.View Full Paper PDF