CREAT: Census Research Exploration and Analysis Tool

Papers Containing Keywords(s): 'statistician'

The following papers contain search terms that you selected. From the papers listed below, you can navigate to the PDF, the profile page for that working paper, or see all the working papers written by an author. You can also explore tags, keywords, and authors that occur frequently within these papers.
Click here to search again

Frequently Occurring Concepts within this Search

National Science Foundation - 16

Center for Economic Studies - 15

Cornell University - 14

Internal Revenue Service - 13

Survey of Income and Program Participation - 12

American Community Survey - 12

Research Data Center - 12

Social Security Administration - 11

Bureau of Labor Statistics - 11

Alfred P Sloan Foundation - 9

Longitudinal Employer Household Dynamics - 8

Service Annual Survey - 8

Social Security - 8

Social Security Number - 8

Bureau of Economic Analysis - 7

North American Industry Classification System - 7

Business Register - 7

Longitudinal Business Database - 6

Decennial Census - 6

Quarterly Workforce Indicators - 6

Current Population Survey - 6

Cornell Institute for Social and Economic Research - 6

Economic Census - 6

Employer Identification Numbers - 6

2010 Census - 5

Census Bureau Disclosure Review Board - 5

Sloan Foundation - 5

National Center for Health Statistics - 5

Public Use Micro Sample - 5

American Statistical Association - 5

Chicago Census Research Data Center - 5

Special Sworn Status - 5

LEHD Program - 5

Statistics Canada - 4

Disclosure Review Board - 4

Federal Statistical Research Data Center - 4

Annual Survey of Manufactures - 4

Census Bureau Business Register - 4

National Institutes of Health - 4

Quarterly Census of Employment and Wages - 4

Standard Industrial Classification - 4

National Longitudinal Survey of Youth - 4

National Institute on Aging - 4

PSID - 4

Longitudinal Research Database - 4

Agency for Healthcare Research and Quality - 3

University of Chicago - 3

Department of Commerce - 3

Computer Assisted Personal Interview - 3

Bureau of Labor - 3

National Bureau of Economic Research - 3

Postal Service - 3

County Business Patterns - 3

Unemployment Insurance - 3

Health and Retirement Study - 3

Detailed Earnings Records - 3

University of Michigan - 3

Business Dynamics Statistics - 3

Census of Manufactures - 3

Census Bureau Longitudinal Business Database - 3

Master Address File - 3

Centers for Disease Control and Prevention - 3

Department of Labor - 3

Viewing papers 1 through 10 of 28


  • Working Paper

    An In-Depth Examination of Requirements for Disclosure Risk Assessment

    October 2023

    Working Paper Number:

    CES-23-49

    The use of formal privacy to protect the confidentiality of responses in the 2020 Decennial Census of Population and Housing has triggered renewed interest and debate over how to measure the disclosure risks and societal benefits of the published data products. Following long-established precedent in economics and statistics, we argue that any proposal for quantifying disclosure risk should be based on pre-specified, objective criteria. Such criteria should be used to compare methodologies to identify those with the most desirable properties. We illustrate this approach, using simple desiderata, to evaluate the absolute disclosure risk framework, the counterfactual framework underlying differential privacy, and prior-to-posterior comparisons. We conclude that satisfying all the desiderata is impossible, but counterfactual comparisons satisfy the most while absolute disclosure risk satisfies the fewest. Furthermore, we explain that many of the criticisms levied against differential privacy would be levied against any technology that is not equivalent to direct, unrestricted access to confidential data. Thus, more research is needed, but in the near-term, the counterfactual approach appears best-suited for privacy-utility analysis.
    View Full Paper PDF
  • Working Paper

    Mixed-Effects Methods For Search and Matching Research

    September 2023

    Working Paper Number:

    CES-23-43

    We study mixed-effects methods for estimating equations containing person and firm effects. In economics such models are usually estimated using fixed-effects methods. Recent enhancements to those fixed-effects methods include corrections to the bias in estimating the covariance matrix of the person and firm effects, which we also consider.
    View Full Paper PDF
  • Working Paper

    Determination of the 2020 U.S. Citizen Voting Age Population (CVAP) Using Administrative Records and Statistical Methodology Technical Report

    October 2020

    Working Paper Number:

    CES-20-33

    This report documents the efforts of the Census Bureau's Citizen Voting-Age Population (CVAP) Internal Expert Panel (IEP) and Technical Working Group (TWG) toward the use of multiple data sources to produce block-level statistics on the citizen voting-age population for use in enforcing the Voting Rights Act. It describes the administrative, survey, and census data sources used, and the four approaches developed for combining these data to produce CVAP estimates. It also discusses other aspects of the estimation process, including how records were linked across the multiple data sources, and the measures taken to protect the confidentiality of the data.
    View Full Paper PDF
  • Working Paper

    Re-engineering Key National Economic Indicators

    July 2019

    Working Paper Number:

    CES-19-22

    Traditional methods of collecting data from businesses and households face increasing challenges. These include declining response rates to surveys, increasing costs to traditional modes of data collection, and the difficulty of keeping pace with rapid changes in the economy. The digitization of virtually all market transactions offers the potential for re-engineering key national economic indicators. The challenge for the statistical system is how to operate in this data-rich environment. This paper focuses on the opportunities for collecting item-level data at the source and constructing key indicators using measurement methods consistent with such a data infrastructure. Ubiquitous digitization of transactions allows price and quantity be collected or aggregated simultaneously at the source. This new architecture for economic statistics creates challenges arising from the rapid change in items sold. The paper explores some recently proposed techniques for estimating price and quantity indices in large scale item-level data. Although those methods display tremendous promise, substantially more research is necessary before they will be ready to serve as the basis for the official economic statistics. Finally, the paper addresses implications for building national statistics from transactions for data collection and for the capabilities and organization of the statistical agencies in the 21st century.
    View Full Paper PDF
  • Working Paper

    The Management and Organizational Practices Survey (MOPS): Collection and Processing

    December 2018

    Working Paper Number:

    CES-18-51

    The U.S. Census Bureau partnered with a team of external researchers to conduct the first-ever large-scale survey of management practices in the United States, the Management and Organizational Practices Survey (MOPS), for reference year 2010. With the help of the research team, the Census Bureau expanded and improved the survey for a second wave for reference year 2015. The MOPS is a supplement to the Annual Survey of Manufacturing (ASM), and so the collection and processing strategy for the MOPS built on the methodology for the ASM, while differing on key dimensions to address the unique nature of management relative to other business data. This paper provides detail on the mail strategy pursued for the MOPS, the collection methods for paper and electronic responses, the processing and estimation procedures, and the official Census Bureau data releases. This detail is useful for all those who have interest in using the MOPS for research purposes, those wishing to understand the MOPS data more deeply, and those with an interest in survey methodology.
    View Full Paper PDF
  • Working Paper

    An Economic Analysis of Privacy Protection and Statistical Accuracy as Social Choices

    August 2018

    Working Paper Number:

    CES-18-35

    Statistical agencies face a dual mandate to publish accurate statistics while protecting respondent privacy. Increasing privacy protection requires decreased accuracy. Recognizing this as a resource allocation problem, we propose an economic solution: operate where the marginal cost of increasing privacy equals the marginal benefit. Our model of production, from computer science, assumes data are published using an efficient differentially private algorithm. Optimal choice weighs the demand for accurate statistics against the demand for privacy. Examples from U.S. statistical programs show how our framework can guide decision-making. Further progress requires a better understanding of willingness-to-pay for privacy and statistical accuracy.
    View Full Paper PDF
  • Working Paper

    Disclosure Limitation and Confidentiality Protection in Linked Data

    January 2018

    Working Paper Number:

    CES-18-07

    Confidentiality protection for linked administrative data is a combination of access modalities and statistical disclosure limitation. We review traditional statistical disclosure limitation methods and newer methods based on synthetic data, input noise infusion and formal privacy. We discuss how these methods are integrated with access modalities by providing three detailed examples. The first example is the linkages in the Health and Retirement Study to Social Security Administration data. The second example is the linkage of the Survey of Income and Program Participation to administrative data from the Internal Revenue Service and the Social Security Administration. The third example is the Longitudinal Employer-Household Dynamics data, which links state unemployment insurance records for workers and firms to a wide variety of censuses and surveys at the U.S. Census Bureau. For examples, we discuss access modalities, disclosure limitation methods, the effectiveness of those methods, and the resulting analytical validity. The final sections discuss recent advances in access modalities for linked administrative data.
    View Full Paper PDF
  • Working Paper

    Effects of a Government-Academic Partnership: Has the NSF-Census Bureau Research Network Helped Improve the U.S. Statistical System?

    January 2017

    Working Paper Number:

    CES-17-59R

    The National Science Foundation-Census Bureau Research Network (NCRN) was established in 2011 to create interdisciplinary research nodes on methodological questions of interest and significance to the broader research community and to the Federal Statistical System (FSS), particularly the Census Bureau. The activities to date have covered both fundamental and applied statistical research and have focused at least in part on the training of current and future generations of researchers in skills of relevance to surveys and alternative measurement of economic units, households, and persons. This paper discusses some of the key research findings of the eight nodes, organized into six topics: (1) Improving census and survey data collection methods; (2) Using alternative sources of data; (3) Protecting privacy and confidentiality by improving disclosure avoidance; (4) Using spatial and spatio-temporal statistical modeling to improve estimates; (5) Assessing data cost and quality tradeoffs; and (6) Combining information from multiple sources. It also reports on collaborations across nodes and with federal agencies, new software developed, and educational activities and outcomes. The paper concludes with an evaluation of the ability of the FSS to apply the NCRN's research outcomes and suggests some next steps, as well as the implications of this research-network model for future federal government renewal initiatives.
    View Full Paper PDF
  • Working Paper

    Revisiting the Economics of Privacy: Population Statistics and Confidentiality Protection as Public Goods

    January 2017

    Working Paper Number:

    CES-17-37

    We consider the problem of determining the optimal accuracy of public statistics when increased accuracy requires a loss of privacy. To formalize this allocation problem, we use tools from statistics and computer science to model the publication technology used by a public statistical agency. We derive the demand for accurate statistics from first principles to generate interdependent preferences that account for the public-good nature of both data accuracy and privacy loss. We first show data accuracy is inefficiently undersupplied by a private provider. Solving the appropriate social planner's problem produces an implementable publication strategy. We implement the socially optimal publication plan for statistics on income and health status using data from the American Community Survey, National Health Interview Survey, Federal Statistical System Public Opinion Survey and Cornell National Social Survey. Our analysis indicates that welfare losses from providing too much privacy protection and, therefore, too little accuracy can be substantial.
    View Full Paper PDF
  • Working Paper

    Examining Multi-Level Correlates of Suicide by Merging NVDRS and ACS Data

    January 2017

    Working Paper Number:

    CES-17-25

    This paper describes a novel database and an associated suicide event prediction model that surmount longstanding barriers in suicide risk factor research. The database comingles person-level records from the National Violent Death Reporting System (NVDRS) and the American Community Survey (ACS) to establish a case-control study sample that includes all identified suicide cases, while faithfully reflecting general population sociodemographics, in sixteen USA states during the years 2005 2011. It supports a statistical model of individual suicide risk that accommodates person-level factors and the moderation of these factors by their community rates. Named the United States Multi-Level Suicide Data Set (US-MSDS), the database was developed outside the RDC laboratory using publicly available ACS microdata, and reconstructed inside the laboratory using restricted access ACS microdata. Analyses of the latter version yielded findings that largely amplified but also extended those obtained from analyses of the former. This experience shows that the analytic precision achievable using restricted access ACS data can play an important role in conducting social research, although it also indicates that publicly available ACS data have considerable value in conducting preliminary analyses and preparing to use an RDC laboratory. The database development strategy may interest scientists investigating sociodemographic risk factors for other types of low-frequency mortality.
    View Full Paper PDF