CREAT: Census Research Exploration and Analysis Tool

Examining Multi-Level Correlates of Suicide by Merging NVDRS and ACS Data

January 2017

Working Paper Number:

CES-17-25

Abstract

This paper describes a novel database and an associated suicide event prediction model that surmount longstanding barriers in suicide risk factor research. The database comingles person-level records from the National Violent Death Reporting System (NVDRS) and the American Community Survey (ACS) to establish a case-control study sample that includes all identified suicide cases, while faithfully reflecting general population sociodemographics, in sixteen USA states during the years 2005 2011. It supports a statistical model of individual suicide risk that accommodates person-level factors and the moderation of these factors by their community rates. Named the United States Multi-Level Suicide Data Set (US-MSDS), the database was developed outside the RDC laboratory using publicly available ACS microdata, and reconstructed inside the laboratory using restricted access ACS microdata. Analyses of the latter version yielded findings that largely amplified but also extended those obtained from analyses of the former. This experience shows that the analytic precision achievable using restricted access ACS data can play an important role in conducting social research, although it also indicates that publicly available ACS data have considerable value in conducting preliminary analyses and preparing to use an RDC laboratory. The database development strategy may interest scientists investigating sociodemographic risk factors for other types of low-frequency mortality.

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
analysis, data, researcher, statistical, database, microdata, agency, research, statistician, reporting, community, datasets, prevalence, mortality

Tags Tags are automatically generated using a pretrained language model from spaCy, which excels at several tasks, including entity tagging.

The model is able to label words and phrases by part-of-speech, including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are identified to contain references to specific institutions, datasets, and other organizations.
:
Service Annual Survey, Chicago Census Research Data Center, Census of Manufacturing Firms, Cornell University, Research Data Center, American Community Survey, National Center for Health Statistics, Department of Health and Human Services, Public Use Micro Sample, Special Sworn Status, National Institutes of Health, Centers for Disease Control and Prevention

Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with 🔥 are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'Examining Multi-Level Correlates of Suicide by Merging NVDRS and ACS Data' are listed below in order of similarity.