CREAT: Census Research Exploration and Analysis Tool

Federal-Local Partnerships on Immigration Law Enforcement: Are the Policies Effective in Reducing Violent Victimization?

April 2023

Written by: Eric P. Baumer, Min Xie

Working Paper Number:

CES-23-18

Abstract

Our understanding of how immigration enforcement impacts crime has been informed by data from the police crime statistics. This study complements existing research by using longitudinal multilevel data from the National Crime Victimization Survey (NCVS) for 2005-2014 to simultaneously assess the impact of the three predominant immigration policies that have been implemented in local communities. The results indicate that the activation of Secure Communities and 287(g) task force agreements significantly increased violent victimization risk among Latinos, whereas they showed no evident impact on victimization risk among non-Latino Whites and Blacks. The activation of 287(g) jail enforcement agreements and anti-detainer policies had no significant impact on violent victimization risk during the period.Contrary to their stated purpose of enhancing public safety, our results show that the Secure Communities program and 287(g) task force agreements did not reduce crime, but instead eroded security in American communities by increasing the likelihood that Latinos experienced violent victimization. These results support the Federal government's ending of 287(g) task force agreements and its more recent move to end the Secure Communities program. Additionally, the results of our study add to the evidence challenging claims that anti-detainer policies pose a threat to violence risk.

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
hispanic, immigrant, enforcement, latino, security, immigration, crime

Tags Tags are automatically generated using a pretrained language model from spaCy, which excels at several tasks, including entity tagging.

The model is able to label words and phrases by part-of-speech, including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are identified to contain references to specific institutions, datasets, and other organizations.
:
Bureau of Labor Statistics, National Science Foundation, American Immigration Council, Decennial Census, Department of Justice, General Accounting Office, Department of Homeland Security, American Community Survey, Census Bureau Disclosure Review Board, Disclosure Review Board, Federal Statistical Research Data Center

Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with 🔥 are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'Federal-Local Partnerships on Immigration Law Enforcement: Are the Policies Effective in Reducing Violent Victimization?' are listed below in order of similarity.