Industry accounts for one-third of energy consumption in the US. Studies suggest that energy efficiency opportunities represent a potential energy resource for regulated utilities and have resulted in rate of return regulated demand-side management (DSM) and energy efficiency (EE) programs. However, many large customers are allowed to self-direct or opt-out. In the Carolinas (NC and SC), over half of industrial and large commercial customers have selected to opt out. Although these customers claim they invest in EE improvements when it is economic and cost-effective to do so, there is no mechanism to validate whether they actually achieved energy savings. This project examines the industrial energy efficiency between the program participants and non participants in the Carolinas by utilizing the non-public Census of Manufacturing data and the public list of firms that have chosen to opt out. We compare the relative energy efficiency between the stay-in and opt-out plants. The t-test results suggest opt-out plants are less efficient. However, the opt-out decisions are not random; large plants or plants belonging to large firms are more likely to opt out, possibly because they have more information and resources. We conduct a propensity score matching method to account for factors that could affect the opt-out decisions. We find that the opt-out plants perform at least as well or slightly better than the stay-in plants. The relative performance of the opt-out firms suggest that they may not need utility program resources to obtain similar levels of efficiency from the stay-in group.
-
Relative Effectiveness of Energy Efficiency Programs versus Market Based Climate Policies in the Chemical Industry
April 2018
Working Paper Number:
CES-18-16
This paper addresses the relative effectiveness of market vs program based climate policies. We compute the carbon price resulting in an equivalent reduction in energy from programs that eliminate the efficiency gap. A reduced-form stochastic frontier energy demand analysis of plant level electricity and fuel data, from energy-intensive chemical sectors, jointly estimates the distribution of energy efficiency and underlying price elasticities. The analysis controls for plant level price endogeneity and heterogeneity to obtain a decomposition of efficiency into persistent (PE) and time-varying (TVE) components. Total inefficiency is relatively small and price elasticities are relatively high. If all plants performed at the 90th percentile of their efficiency distribution, the reduction in energy is between 4% and 13%. A modest carbon price of between $9.48/ton and $14.01/ton CO2 would achieve reductions in energy use equivalent to all manufacturing plants making improvements to close the efficiency gap.
View Full
Paper PDF
-
The Energy Efficiency Gap and Energy Price Responsiveness in Food Processing
June 2020
Working Paper Number:
CES-20-18
This paper estimates stochastic frontier energy demand functions with non-public, plant-level data from the U.S. Census Bureau to measure the energy efficiency gap and energy price elasticities in the food processing industry. The estimates are for electricity and fuel use in 4 food processing sectors, based on the disaggregation of this industry used by the National Energy Modeling System Industrial Demand Module. The estimated demand functions control for plant inputs and output, energy prices, and other observables including 6-digit NAICS industry designations. Own price elasticities range from 0.6 to -0.9 with little evidence of fuel/electricity substitution. The magnitude of the efficiency estimates is sensitive to the assumptions but consistently reveal that few plants achieve 100% efficiency. Defining a 'practical level of energy efficiency' as the 95th percentile of the efficiency distributions and averaging across all the models result in a ~20% efficiency gap. However, most of the potential reductions in energy use from closing this efficiency gap are from plants that are 'low hanging fruit'; 13% of the 20% potential reduction in the efficiency gap can be obtained by bringing the lower half of the efficiency distribution up to just the median level of observed performance. New plants do exhibit higher energy efficiency than existing plants which is statistically significant, but the difference is small for most of the industry; ranging from a low of 0.4% to a high of 5.7%.
View Full
Paper PDF
-
Estimating the Distribution of Plant-Level Manufacturing Energy Efficiency with Stochastic Frontier Regression
March 2007
Working Paper Number:
CES-07-07
A feature commonly used to distinguish between parametric/statistical models and engineering models is that engineering models explicitly represent best practice technologies while the parametric/statistical models are typically based on average practice. Measures of energy intensity based on average practice are less useful in the corporate management of energy or for public policy goal setting. In the context of company or plant level energy management, it is more useful to have a measure of energy intensity capable of representing where a company or plant lies within a distribution of performance. In other words, is the performance close (or far) from the industry best practice? This paper presents a parametric/statistical approach that can be used to measure best practice, thereby providing a measure of the difference, or 'efficiency gap' at a plant, company or overall industry level. The approach requires plant level data and applies a stochastic frontier regression analysis to energy use. Stochastic frontier regression analysis separates the energy intensity into three components, systematic effects, inefficiency, and statistical (random) error. The stochastic frontier can be viewed as a sub-vector input distance function. One advantage of this approach is that physical product mix can be included in the distance function, avoiding the problem of aggregating output to define a single energy/output ratio to measure energy intensity. The paper outlines the methods and gives an example of the analysis conducted for a non-public micro-dataset of wet corn refining plants.
View Full
Paper PDF
-
The U.S. Manufacturing Sector's Response to Higher Electricity Prices: Evidence from State-Level Renewable Portfolio Standards
October 2022
Working Paper Number:
CES-22-47
While several papers examine the effects of renewable portfolio standards (RPS) on electricity prices, they mainly rely on state-level data and there has been little research on how RPS policies affect manufacturing activity via their effect on electricity prices. Using plant-level data for the entire U.S. manufacturing sector and all electric utilities from 1992 ' 2015, we jointly estimate the effect of RPS adoption and stringency on plant-level electricity prices and production decisions. To ensure that our results are not sensitive to possible pre-existing differences across manufacturing plants in RPS and non-RPS states, we implement coarsened exact covariate matching. Our results suggest that electricity prices for plants in RPS states averaged about 2% higher than in non-RPS states, notably lower than prior estimates based on state-level data. In response to these higher electricity prices, we estimate that plant electricity usage declined by 1.2% for all plants and 1.8% for energy-intensive plants, broadly consistent with published estimates of the elasticity of electricity demand for industrial users. We find smaller declines in output, employment, and hours worked (relative to the decline in electricity use). Finally, several key RPS policy design features that vary substantially from state-to-state produce heterogeneous effects on plant-level electricity prices.
View Full
Paper PDF
-
Measuring Plant Level Energy Efficiency and Technical Change in the U.S. Metal-Based Durable Manufacturing Sector Using Stochastic Frontier Analysis
January 2016
Working Paper Number:
CES-16-52
This study analyzes the electric and thermal energy efficiency for five different metal-based durable manufacturing industries in the United States from 1987-2012 at the 3 digit North American Industry Classification System (NAICS) level. Using confidential plant-level data on energy use and production from the quinquennial U.S. Economic Census, a stochastic frontier regression analysis (SFA) is applied in six repeated cross sections for each five year census. The SFA controls for energy prices and climate-driven energy demand (heating degree days - HDD - and cooling degree days - CDD) due to differences in plant level locations, as well as 6-digit NAICS industry effects. A Malmquist index is used to decompose aggregate plant technical change in energy use into indices of efficiency and frontier (best practice) change. Own energy price elasticities range from -.7 to -1.0, with electricity tending to have slightly higher elasticity than fuel. Mean efficiency estimates (100 percent equals best practice level) range from a low of 32 percent (thermal 334 - Computer and Electronic Products) to a high of 86 percent (electricity 332 - Fabricated Metal Products). Electric efficiency is consistently better than thermal efficiency for all NAICS. There is no clear pattern to the decomposition of aggregate technical Thermal change. In some years efficiency improvement dominates; in other years aggregate technical change is driven by improvement in best practice.
View Full
Paper PDF
-
The Real Effects of Hedge Fund Activism: Productivity, Risk, and Product Market Competition
July 2012
Working Paper Number:
CES-12-14
This paper studies the long-term effect of hedge fund activism on the productivity of target firms using plant-level information from the U.S. Census Bureau. A typical target firm improves its production efficiency within two years after activism, and this improvement is concentrated in industries with a high degree of product market competition. By following plants that were sold post-intervention, we also find that efficient capital redeployment is an important channel via which activists create value. Furthermore, our analyses demonstrate that measuring performance using the Compustat data is likely to lead to a downward bias because target firms experiencing greater improvement post-intervention are also more likely to disappear from the Compustat database. Finally, consistent with recent work in asset-pricing linking firm investment decisions and expected returns, we show how changes to target firms' productivity are associated with a decline in systemic risk, particularly in competitive industries.
View Full
Paper PDF
-
Empirical Distribution of the Plant-Level Components of Energy and Carbon Intensity at the Six-digit NAICS Level Using a Modified KAYA Identity
September 2024
Working Paper Number:
CES-24-46
Three basic pillars of industry-level decarbonization are energy efficiency, decarbonization of energy sources, and electrification. This paper provides estimates of a decomposition of these three components of carbon emissions by industry: energy intensity, carbon intensity of energy, and energy (fuel) mix. These estimates are constructed at the six-digit NAICS level from non-public, plant-level data collected by the Census Bureau. Four quintiles of the distribution of each of the three components are constructed, using multiple imputation (MI) to deal with non-reported energy variables in the Census data. MI allows the estimates to avoid non-reporting bias. MI also allows more six-digit NAICS to be estimated under Census non-disclosure rules, since dropping non-reported observations may have reduced the sample sizes unnecessarily. The estimates show wide variation in each of these three components of emissions (intensity) and provide a first empirical look into the plant-level variation that underlies carbon emissions.
View Full
Paper PDF
-
Cogeneration Technology Adoption in the U.S.
January 2016
Working Paper Number:
CES-16-30
Well over half of all electricity generated in recent years in Denmark is through cogeneration. In U.S., however, this number is only roughly eight percent. While both the federal and state governments provided regulatory incentives for more cogeneration adoption, the capacity added in the past five years have been the lowest since late 1970s. My goal is to first understand what are and their relative importance of the factors that drive cogeneration technology adoption, with an emphasis on estimating the elasticity of adoption with respect to relative energy input prices and regulatory factors. Very preliminary results show that with a 1 cent increase in purchased electricity price from 6 cents (roughly current average) to 7 cents per kwh, the likelihood of cogeneration technology adoption goes up by about 0.7-1 percent. Then I will try to address the general equilibrium effect of cogeneration adoption in the electricity generation sector as a whole and potentially estimate some key parameters that the social planner would need to determine the optimal cogeneration investment amount. Partial equilibrium setting does not consider the decrease in investment in the utilities sector when facing competition from the distributed electricity generators, and therefore ignore the effects from the change in equilibrium price of electricity. The competitive market equilibrium setting does not consider the externality in the reduction of CO2 emissions, and leads to socially sub-optimal investment in cogeneration. If we were to achieve the national goal to increase cogeneration capacity half of the current capacity by 2020, the US Department of Energy (DOE) estimated an annual reduction of 150 million metric tons of CO2 annually ' equivalent to the emissions from over 25 million cars. This is about five times the annual carbon reduction from deregulation and consolidation in the US nuclear power industry (Davis, Wolfram 2012). Although the DOE estimates could be an overly optimistic estimate, it nonetheless suggests the large potential in the adoption of cogeneration technology.
View Full
Paper PDF
-
EVIDENCE OF AN 'ENERGY-MANAGEMENT GAP' IN U.S. MANUFACTURING:
SPILLOVERS FROM FIRM MANAGEMENT PRACTICES TO ENERGY EFFICIENCY
April 2013
Working Paper Number:
CES-13-25
In this paper we merge a well-cited survey of firm management practices into confidential U.S. Census microdata to examine whether generic, i.e. non-energy specific, firm management practices, 'spillover' to enhance energy efficiency in the United States. We find the relationship in U.S. plants to be more nuanced than past research on UK plants has suggested. Most management techniques have beneficial spillovers to energy efficiency, but an emphasis on generic targets, conditional on other management practices, results in spillovers that increase energy intensity. Our specification controls for industry specific effects at a detailed 6-digit NAICS level and shows that this result is stronger for firms in energy intensive industries. We interpret the empirical result that generic management practices do not necessarily spillover to improved energy performance as evidence of an 'energy management gap.'
View Full
Paper PDF
-
Industrial Investments in Energy Efficiency: A Good Idea?
January 2017
Working Paper Number:
CES-17-05
Yes, from an energy-saving perspective. No, once we factor in the negative output and productivity adoption effects. These are the main conclusions we reach by conducting the first large-scale study on cogeneration technology adoption ' a prominent form of energy-saving investments ' in the U.S. manufacturing sector, using a sample that runs from 1982 to 2010 and drawing on multiple data sources from the U.S. Census Bureau and the U.S. Energy Information Administration. We first show through a series of event studies that no differential trends exist in energy consumption nor production activities between adopters and never-adopters prior to the adoption event. We then compute a distribution of realized returns to energy savings, using accounting methods and regression methods, based on our difference-in-difference estimator. We find that (1) significant heterogeneity exists in returns; (2) unlike previous studies in the residential sector, the realized and projected returns to energy savings are roughly consistent in the industrial sector, for both private and social returns; (3) however, cogeneration adoption decreases manufacturing output and productivity persistently for at least the next 7-10 years, relative to the control group. Our IV strategies also show sizable decline in TFP post adoption.
View Full
Paper PDF