CREAT: Census Research Exploration and Analysis Tool

Who are the people in my neighborhood? The 'contextual fallacy' of measuring individual context with census geographies

February 2018

Working Paper Number:

CES-18-11

Abstract

Scholars deploy census-based measures of neighborhood context throughout the social sciences and epidemiology. Decades of research confirm that variation in how individuals are aggregated into geographic units to create variables that control for social, economic or political contexts can dramatically alter analyses. While most researchers are aware of the problem, they have lacked the tools to determine its magnitude in the literature and in their own projects. By using confidential access to the complete 2010 U.S. Decennial Census, we are able to construct'for all persons in the US'individual-specific contexts, which we group according to the Census-assigned block, block group, and tract. We compare these individual-specific measures to the published statistics at each scale, and we then determine the magnitude of variation in context for an individual with respect to the published measures using a simple statistic, the standard deviation of individual context (SDIC). For three key measures (percent Black, percent Hispanic, and Entropy'a measure of ethno-racial diversity), we find that block-level Census statistics frequently do not capture the actual context of individuals within them. More problematic, we uncover systematic spatial patterns in the contextual variables at all three scales. Finally, we show that within-unit variation is greater in some parts of the country than in others. We publish county-level estimates of the SDIC statistics that enable scholars to assess whether mis-specification in context variables is likely to alter analytic findings when measured at any of the three common Census units.

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
data census, census research, respondent, black, hispanic, immigrant, white, metropolitan, segregation, geographically, population, racial, race, geography, immigration, ancestry, neighborhood, census bureau, resident, geographic, neighbor, 2010 census, census responses, race census

Tags Tags are automatically generated using a pretrained language model from spaCy, which excels at several tasks, including entity tagging.

The model is able to label words and phrases by part-of-speech, including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are identified to contain references to specific institutions, datasets, and other organizations.
:
National Science Foundation, Decennial Census, Chicago Census Research Data Center, Research Data Center, Geographic Information Systems, 2010 Census, Federal Statistical Research Data Center

Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with 🔥 are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'Who are the people in my neighborhood? The 'contextual fallacy' of measuring individual context with census geographies' are listed below in order of similarity.