CREAT: Census Research Exploration and Analysis Tool

Structural versus Ethnic Dimensions of Housing Segregation

March 2016

Working Paper Number:

CES-16-22

Abstract

Racial residential segregation is still very high in many American cities. Some portion of segregation is attributable to socioeconomic differences across racial lines; some portion is caused by purely racial factors, such as preferences about the racial composition of one's neighborhood or discrimination in the housing market. Social scientists have had great difficulty disaggregating segregation into a portion that can be explained by interracial differences in socioeconomic characteristics (what we call structural factors) versus a portion attributable to racial and ethnic factors. What would such a measure look like? In this paper, we draw on a new source of data to develop an innovative structural segregation measure that shows the amount of segregation that would remain if we could assign households to housing units based only on non-racial socioeconomic characteristics. This inquiry provides vital building blocks for the broader enterprise of understanding and remedying housing segregation.

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
black, minority, ethnicity, ethnic, hispanic, white, metropolitan, segregated, discrimination, segregation, disadvantaged, population, racial, interracial, race, housing, residential, socioeconomic, neighborhood, suburb, resident, home, disparity, residential segregation

Tags Tags are automatically generated using a pretrained language model from spaCy, which excels at several tasks, including entity tagging.

The model is able to label words and phrases by part-of-speech, including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are identified to contain references to specific institutions, datasets, and other organizations.
:
Metropolitan Statistical Area, Harvard University, Supreme Court, Decennial Census, Research Data Center, American Community Survey, Russell Sage Foundation, Public Use Micro Sample, Federal Statistical Research Data Center

Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with 🔥 are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'Structural versus Ethnic Dimensions of Housing Segregation' are listed below in order of similarity.