CREAT: Census Research Exploration and Analysis Tool

Full Report of the Comparisons of Administrative Record Rosters to Census Self-Responses and NRFU Household Member Responses

March 2023

Working Paper Number:

CES-23-08

Abstract

One of the U.S. Census Bureau's innovations in the 2020 U.S. Census was the use of administrative records (AR) to create household rosters for enumerating some addresses when a self response was not available but high-quality ARs were. The goal was to reduce the cost of fieldwork during the Nonresponse Followup operation (NRFU). The original plan had NRFU beginning in mid-May and continuing through late July 2020. However, the COVID-19 pandemic forced the delay of NRFU and caused the Internal Revenue Service to postpone the income tax filing deadline, resulting in an interruption in the delivery of ARs to the U.S. Census Bureau. The delays were not anticipated when U.S. Census Bureau staff conducted the research on AR enumeration with the 2010 Census data in preparation for the 2020 Census or during the fine tuning of plans for using ARs during the 2018 End-to-End Census Test. These circumstances raised questions about whether the quality of the AR household rosters was high enough for use in enumeration. To aid in investigating the concern about the quality of the AR rosters, our analyses compared AR rosters to self-response rosters and NRFU household member responses at addresses where both ARs and a self-response were available.

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
quarterly, agency, respondent, imputation, department, record, federal, household, irs, coverage, filing, census use, taxpayer, census response, 1040

Tags Tags are automatically generated using a pretrained language model from spaCy, which excels at several tasks, including entity tagging.

The model is able to label words and phrases by part-of-speech, including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are identified to contain references to specific institutions, datasets, and other organizations.
:
Internal Revenue Service, Social Security Administration, Office of Management and Budget, 1990 Census, Postal Service, Social Security, Department of Housing and Urban Development, American Community Survey, Social Security Number, Protected Identification Key, Master Address File, Census Bureau Disclosure Review Board, 2020 Census, Indian Health Service, Person Validation System, Census Numident, Person Identification Validation System, Census Household Composition Key, Census Bureau Master Address File, Indian Housing Information Center, Census Edited File

Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with 🔥 are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'Full Report of the Comparisons of Administrative Record Rosters to Census Self-Responses and NRFU Household Member Responses' are listed below in order of similarity.