CREAT: Census Research Exploration and Analysis Tool

Metropolitan Segregation: No Breakthrough in Sight

May 2022

Working Paper Number:

CES-22-14

Abstract

The 2020 Census offers new information on changes in residential segregation in metropolitan regions across the country as they continue to become more diverse. We take a long view, assessing trends since 1980 and extrapolating to the future. These new data mostly reinforce patterns that were observed a decade ago: high but slowly declining black-white segregation, and less intense but hardly changing segregation of Hispanics and Asians from whites. Enough time has passed since the civil rights era of the 1960s and 1970s to draw this conclusion: segregation will continue to divide Americans well into the 21st Century.

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
black, minority, ethnic, hispanic, midwest, white, metropolitan, segregated, segregation, population, racial, race, residential, neighborhood, suburb, resident, disparity, residential segregation

Tags Tags are automatically generated using a pretrained language model from spaCy, which excels at several tasks, including entity tagging.

The model is able to label words and phrases by part-of-speech, including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are identified to contain references to specific institutions, datasets, and other organizations.
:
Metropolitan Statistical Area, 2010 Census

Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with 🔥 are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'Metropolitan Segregation: No Breakthrough in Sight' are listed below in order of similarity.