CREAT: Census Research Exploration and Analysis Tool

WHITE-LATINO RESIDENTIAL ATTAINMENTS AND SEGREGATION IN SIX CITIES: ASSESSING THE ROLE OF MICRO-LEVEL FACTORS

January 2016

Working Paper Number:

CES-16-51

Abstract

This study examines the residential outcomes of Latinos in major metropolitan areas using new methods to connect micro-level analyses of residential attainments to overall patterns of segregation in the metropolitan area. Drawing on new formulations of standard measures of evenness, we conduct micro-level multivariate analyses using the restricted-use census microdata files to predict segregation-relevant neighborhood outcomes for individuals by race. We term the dependent variables segregation-relevant neighborhood outcomes because the differences in average outcomes for each group on these variables determine the values of the aggregate measures of evenness. This approach allows me to use standardization and components analysis to quantitatively assess the separate contributions that differences in social characteristics and differences in rates of return make towards determining the overall disparity in residential outcomes ' that is, the level of segregation ' between Whites and Latinos. Based on our micro-level residential attainment analyses we find that for Latinos, acculturation and gains in socioeconomic status are associated with greater residential contact with Whites, in agreement with spatial assimilation theory, which promotes lower segregation. However, our standardization and components analyses reveals that a substantial portion of White-Latino disparities in residential contact with Whites can be attributed to differences in rates of return; that is White-Latino differences in the ability to translate acculturation and gains in socioeconomic status into more residential contact with Whites. This is further elaborated upon by assessing the changes in contact with Whites for Whites and Latinos after manipulating single variables while holding all others constant. This can be interpreted as the role of discrimination which is emphasized by place stratification theory. Therefore we conclude that while members of minority groups make gains in residential outcomes that reduce segregation by attaining parity with Whites on social characteristics as spatial assimilation theory would predict, a substantial disparity will persist as Latinos cannot translate those gains into greater contact with Whites at the rate that Whites can. At the aggregate level of analysis, this means that White-Latino segregation remains substantial even when groups are equalized on social and economic characteristics.

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
black, minority, ethnicity, ethnic, hispanic, ethnically, white, metropolitan, segregated, discriminatory, segregation, latino, disadvantaged, racial, race, residential, neighborhood, resident, disparity, residence, migrant, residential segregation, assimilation

Tags Tags are automatically generated using a pretrained language model from spaCy, which excels at several tasks, including entity tagging.

The model is able to label words and phrases by part-of-speech, including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are identified to contain references to specific institutions, datasets, and other organizations.
:
Center for Economic Studies, Ordinary Least Squares, University of Chicago, American Community Survey, Public Use Micro Sample, General Education Development

Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with 🔥 are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'WHITE-LATINO RESIDENTIAL ATTAINMENTS AND SEGREGATION IN SIX CITIES: ASSESSING THE ROLE OF MICRO-LEVEL FACTORS' are listed below in order of similarity.