Papers Containing Keywords(s): 'survey income'
The following papers contain search terms that you selected. From the papers listed below, you can navigate to the PDF, the profile page for that working paper, or see all the working papers written by an author. You can also explore tags, keywords, and authors that occur frequently within these papers.
See Working Papers by Tag(s), Keywords(s), Author(s), or Search Text
Click here to search again
Frequently Occurring Concepts within this Search
John Voorheis - 3
Viewing papers 1 through 10 of 17
-
Working PaperIncorporating Administrative Data in Survey Weights for the 2018-2022 Survey of Income and Program Participation
October 2024
Working Paper Number:
CES-24-58
Response rates to the Survey of Income and Program Participation (SIPP) have declined over time, raising the potential for nonresponse bias in survey estimates. A potential solution is to leverage administrative data from government agencies and third-party data providers when constructing survey weights. In this paper, we modify various parts of the SIPP weighting algorithm to incorporate such data. We create these new weights for the 2018 through 2022 SIPP panels and examine how the new weights affect survey estimates. Our results show that before weighting adjustments, SIPP respondents in these panels have higher socioeconomic status than the general population. Existing weighting procedures reduce many of these differences. Comparing SIPP estimates between the production weights and the administrative data-based weights yields changes that are not uniform across the joint income and program participation distribution. Unlike other Census Bureau household surveys, there is no large increase in nonresponse bias in SIPP due to the COVID-19 Pandemic. In summary, the magnitude and sign of nonresponse bias in SIPP is complicated, and the existing weighting procedures may change the sign of nonresponse bias for households with certain incomes and program benefit statuses.View Full Paper PDF
-
Working PaperThe Icing on the Cake: The Effects of Monetary Incentives on Income Data Quality in the SIPP
January 2024
Working Paper Number:
CES-24-03
Accurate measurement of key income variables plays a crucial role in economic research and policy decision-making. However, the presence of item nonresponse and measurement error in survey data can cause biased estimates. These biases can subsequently lead to sub-optimal policy decisions and inefficient allocation of resources. While there have been various studies documenting item nonresponse and measurement error in economic data, there have not been many studies investigating interventions that could reduce item nonresponse and measurement error. In our research, we investigate the impact of monetary incentives on reducing item nonresponse and measurement error for labor and investment income in the Survey of Income and Program Participation (SIPP). Our study utilizes a randomized incentive experiment in Waves 1 and 2 of the 2014 SIPP, which allows us to assess the effectiveness of incentives in reducing item nonresponse and measurement error. We find that households receiving incentives had item nonresponse rates that are 1.3 percentage points lower for earnings and 1.5 percentage points lower for Social Security income. Measurement error was 6.31 percentage points lower at the intensive margin for interest income, and 16.48 percentage points lower for dividend income compared to non-incentive recipient households. These findings provide valuable insights for data producers and users and highlight the importance of implementing strategies to improve data quality in economic research.View Full Paper PDF
-
Working PaperIncorporating Administrative Data in Survey Weights for the Basic Monthly Current Population Survey
January 2024
Working Paper Number:
CES-24-02
Response rates to the Current Population Survey (CPS) have declined over time, raising the potential for nonresponse bias in key population statistics. A potential solution is to leverage administrative data from government agencies and third-party data providers when constructing survey weights. In this paper, we take two approaches. First, we use administrative data to build a non-parametric nonresponse adjustment step while leaving the calibration to population estimates unchanged. Second, we use administratively linked data in the calibration process, matching income data from the Internal Return Service and state agencies, demographic data from the Social Security Administration and the decennial census, and industry data from the Census Bureau's Business Register to both responding and nonresponding households. We use the matched data in the household nonresponse adjustment of the CPS weighting algorithm, which changes the weights of respondents to account for differential nonresponse rates among subpopulations. After running the experimental weighting algorithm, we compare estimates of the unemployment rate and labor force participation rate between the experimental weights and the production weights. Before March 2020, estimates of the labor force participation rates using the experimental weights are 0.2 percentage points higher than the original estimates, with minimal effect on unemployment rate. After March 2020, the new labor force participation rates are similar, but the unemployment rate is about 0.2 percentage points higher in some months during the height of COVID-related interviewing restrictions. These results are suggestive that if there is any nonresponse bias present in the CPS, the magnitude is comparable to the typical margin of error of the unemployment rate estimate. Additionally, the results are overall similar across demographic groups and states, as well as using alternative weighting methodology. Finally, we discuss how our estimates compare to those from earlier papers that calculate estimates of bias in key CPS labor force statistics. This paper is for research purposes only. No changes to production are being implemented at this time.View Full Paper PDF
-
Working PaperWhen and Why Does Nonresponse Occur? Comparing the Determinants of Initial Unit Nonresponse and Panel Attrition
September 2023
Working Paper Number:
CES-23-44
Though unit nonresponse threatens data quality in both cross-sectional and panel surveys, little is understood about how initial nonresponse and later panel attrition may be theoretically or empirically distinct phenomena. This study advances current knowledge of the determinants of both unit nonresponse and panel attrition within the context of the U.S. Census Bureau's Survey of Income and Program Participation (SIPP) panel survey, which I link with high-quality federal administrative records, paradata, and geographic data. By exploiting the SIPP's interpenetrated sampling design and relying on cross-classified random effects modeling, this study quantifies the relative effects of sample household, interviewer, and place characteristics on baseline nonresponse and later attrition, addressing a critical gap in the literature. Given the reliance on successful record linkages between survey sample households and federal administrative data in the nonresponse research, this study also undertakes an explicitly spatial analysis of the place-based characteristics associated with successful record linkages in the U.S.View Full Paper PDF
-
Working PaperSelf-Employment Income Reporting on Surveys
April 2023
Working Paper Number:
CES-23-19
We examine the relation between administrative income data and survey reports for self-employed and wage-earning respondents from 2000 - 2015. The self-employed report 40 percent more wages and self-employment income in the survey than in tax administrative records; this estimate nets out differences between these two sources that are also shared by wage-earners. We provide evidence that differential reporting incentives are an important explanation of the larger self-employed gap by exploiting a well-known artifact ' self-employed respondents exhibit substantial bunching at the first EITC kink in their administrative records. We do not observe the same behavior in their survey responses even after accounting for survey measurement concerns.View Full Paper PDF
-
Working PaperNational Experimental Wellbeing Statistics - Version 1
February 2023
Working Paper Number:
CES-23-04
This is the U.S. Census Bureau's first release of the National Experimental Wellbeing Statistics (NEWS) project. The NEWS project aims to produce the best possible estimates of income and poverty given all available survey and administrative data. We link survey, decennial census, administrative, and third-party data to address measurement error in income and poverty statistics. We estimate improved (pre-tax money) income and poverty statistics for 2018 by addressing several possible sources of bias documented in prior research. We address biases from 1) unit nonresponse through improved weights, 2) missing income information in both survey and administrative data through improved imputation, and 3) misreporting by combining or replacing survey responses with administrative information. Reducing survey error substantially affects key measures of well-being: We estimate median household income is 6.3 percent higher than in survey estimates, and poverty is 1.1 percentage points lower. These changes are driven by subpopulations for which survey error is particularly relevant. For house holders aged 65 and over, median household income is 27.3 percent higher and poverty is 3.3 percentage points lower than in survey estimates. We do not find a significant impact on median household income for householders under 65 or on child poverty. Finally, we discuss plans for future releases: addressing other potential sources of bias, releasing additional years of statistics, extending the income concepts measured, and including smaller geographies such as state and county.View Full Paper PDF
-
Working PaperInvestigating the Use of Administrative Records in the Consumer Expenditure Survey
March 2018
Working Paper Number:
carra-2018-01
In this paper, we investigate the potential of applying administrative records income data to the Consumer Expenditure (CE) survey to inform measurement error properties of CE estimates, supplement respondent-collected data, and estimate the representativeness of the CE survey by income level. We match individual responses to Consumer Expenditure Quarterly Interview Survey data collected from July 2013 through December 2014 to IRS administrative data in order to analyze CE questions on wages, social security payroll deductions, self-employment income receipt and retirement income. We find that while wage amounts are largely in alignment between the CE and administrative records in the middle of the wage distribution, there is evidence that wages are over-reported to the CE at the bottom of the wage distribution and under-reported at the top of the wage distribution. We find mixed evidence for alignment between the CE and administrative records on questions covering payroll deductions and self-employment income receipt, but find substantial divergence between CE responses and administrative records when examining retirement income. In addition to the analysis using person-based linkages, we also match responding and non-responding CE sample units to the universe of IRS 1040 tax returns by address to examine non-response bias. We find that non-responding households are substantially richer than responding households, and that very high income households are less likely to respond to the CE.View Full Paper PDF
-
Working PaperEvaluating the Use of Commercial Data to Improve Survey Estimates of Property Taxes
August 2016
Working Paper Number:
carra-2016-06
While commercial data sources offer promise to statistical agencies for use in production of official statistics, challenges can arise as the data are not collected for statistical purposes. This paper evaluates the use of 2008-2010 property tax data from CoreLogic, Inc. (CoreLogic), aggregated from county and township governments from around the country, to improve 2010 American Community Survey (ACS) estimates of property tax amounts for single-family homes. Particularly, the research evaluates the potential to use CoreLogic to reduce respondent burden, to study survey response error and to improve adjustments for survey nonresponse. The research found that the coverage of the CoreLogic data varies between counties as does the correspondence between ACS and CoreLogic property taxes. This geographic variation implies that different approaches toward using CoreLogic are needed in different areas of the country. Further, large differences between CoreLogic and ACS property taxes in certain counties seem to be due to conceptual differences between what is collected in the two data sources. The research examines three counties, Clark County, NV, Philadelphia County, PA and St. Louis County, MO, and compares how estimates would change with different approaches using the CoreLogic data. Mean county property tax estimates are highly sensitive to whether ACS or CoreLogic data are used to construct estimates. Using CoreLogic data in imputation modeling for nonresponse adjustment of ACS estimates modestly improves the predictive power of imputation models, although estimates of county property taxes and property taxes by mortgage status are not very sensitive to the imputation method.View Full Paper PDF
-
Working PaperIncome Packaging and Economic Disconnection: Do Sources of Support Differ from Other Low-Income Women?
December 2013
Working Paper Number:
CES-13-61
Income packaging, or piecing together cash and non-cash resources from a variety of sources, is a common financial survival strategy among low-income women. This strategy is particularly important for economically disconnected women, who lack both employment income and public cash assistance receipt. Using data from the confidential Census Bureau versions of the Survey of Income and Program Participation, this study compares the use of public and private supports between disconnected and connected low-income women, controlling for differences in state welfare rules and county unemployment rates. Findings from bivariate comparisons and multilevel logistic regressions indicate that disconnected women utilize public non-cash supports at similar rates to connected women, but rely more heavily on private sources. Conclusions focus on the policy implications for outreach and program development.View Full Paper PDF
-
Working PaperA METHOD OF CORRECTING FOR MISREPORTING APPLIED TO THE FOOD STAMP PROGRAM
May 2013
Working Paper Number:
CES-13-28
Survey misreporting is known to be pervasive and bias common statistical analyses. In this paper, I first use administrative data on SNAP receipt and amounts linked to American Community Survey data from New York State to show that survey data can misrepresent the program in important ways. For example, more than 1.4 billion dollars received are not reported in New York State alone. 46 percent of dollars received by house- holds with annual income above the poverty line are not reported in the survey data, while only 19 percent are missing below the poverty line. Standard corrections for measurement error cannot remove these biases. I then develop a method to obtain consistent estimates by combining parameter estimates from the linked data with publicly available data. This conditional density method recovers the correct estimates using public use data only, which solves the problem that access to linked administrative data is usually restricted. I examine the degree to which this approach can be used to extrapolate across time and geography, in order to solve the problem that validation data is often based on a convenience sample. I present evidence from within New York State that the extent of heterogeneity is small enough to make extrapolation work well across both time and geography. Extrapolation to the entire U.S. yields substantive differences to survey data and reduces deviations from official aggregates by a factor of 4 to 9 compared to survey aggregates.View Full Paper PDF