-
Non-Random Assignment of Individual Identifiers and Selection into Linked Data: Implications for Research
January 2026
Working Paper Number:
CES-26-06
The U.S. Census Bureau's Person Identification Validation System facilitates anonymous linkages between survey and administrative records by assigning Protected Identification Keys (PIKs) to person records. While PIK assignment is generally accurate, some person records are not successfully assigned a PIK, which can lead to sample selection bias in analyses of linked data. Using the American Community Survey (ACS) and the Current Population Survey Annual Social and Economic Supplement (CPS ASEC) between 2005 and 2022, we corroborate and extend existing findings on the drivers of PIK assignment, showing that the rate of PIK assignment varies widely across socio-demographic subgroups. Using earnings as a test case, we then show that limiting a survey sample of wage earners to person records with PIKs or successful linkages to W-2 wage records tends to overestimate self-reported wage earnings, on average, indicative of linkage-induced selection bias. In a validation exercise, we demonstrate that reweighting methods, such as inverse probability weighting or entropy balancing, can mitigate this bias.
View Full
Paper PDF
-
Integrating Multiple U.S. Census Bureau Data Assets to Create Standardized Profiles of Program Participants
January 2026
Working Paper Number:
CES-26-01
The Foundations for Evidence-Based Policymaking Act of 2018 (Evidence Act) directed federal agencies to systematically use data when making policy decisions. In response, the U.S. Census Bureau established the Evidence Group within its Center for Economic Studies (CES). With an interdisciplinary team of economists, sociologists, and statisticians, the Evidence Group can support the broader federal government in their efforts to use existing data to improve program operations without increasing respondent burden. For federal agencies administering social safety net and business assistance programs in particular, the team provides a no-cost evidence-building service that links program records to Census Bureau data assets and creates a series of standardized tables describing participants, their economic outcomes prior to program entry, and the communities where they live. These tables provide partner agencies with the detailed information they need to better understand their participants and potentially make their programs more accountable and effective in reaching their target populations. In this working paper, we describe the standardized tables themselves as well as the data assets available at the Census Bureau to create these tables, the data files produced by the table production process, and the methodology used to merge and harmonize data on participants and subsequently calculate unbiased and accurate estimates. We conclude with a brief discussion of steps taken to ensure confidentiality and data security. This documentation is intended to facilitate proper use and understanding of the standardized tables by partner agencies as well as researchers who are interested in leveraging these tools to explore characteristics of their samples of interest.
View Full
Paper PDF
-
School-Based Disability Identification Varies by Student Family Income
December 2025
Authors:
Quentin Brummet,
Andrew Penner,
Emily Penner,
Leah R. Clark,
Michelle Spiegel,
Paul Y. Yoo,
Paul Hanselman,
Nicholas J. Ainsworth,
Christopher Cleveland,
Jacob Hibel,
Andrew Saultz,
Juan Camilo Cristancho
Working Paper Number:
CES-25-74
Currently, 18 percent of K-12 students in the United States receive additional supports through the identification of a disability. Socioeconomic status is viewed as central to understanding who gets identified as having a disability, yet limited large-scale evidence examines how disability identification varies for students from different income backgrounds. Using unique data linking information on Oregon students and their family income, we document pronounced income-based differences in how students are categorized for two school-based disability supports: special education services and Section 504 plans. We find that a quarter of students in the lowest income percentile receive supports through special education, compared with less than seven percent of students in the top income percentile. This pattern may partially reflect differences in underlying disability-related needs caused by poverty. However, we find the opposite pattern for 504 plans, where students in the top income percentiles are two times more likely to receive 504 plan supports. We further document substantial variation in these income-based differences by disability category, by race/ethnicity, and by grade level. Together, these patterns suggest that disability-related needs alone cannot account for the income-based differences that we observe and highlight the complex ways that income shapes the school and family processes that lead to variability in disability classification and services.
View Full
Paper PDF
-
Estimating the Graduate Coverage of Post-Secondary Employment Outcomes
September 2025
Working Paper Number:
CES-25-61
This paper proposes a new methodology for estimating the coverage rate of the Post-Secondary Employment Outcomes data product (PSEO), both as a share of new graduates and as a share of total working-age degree holders in the United States. This paper also assesses how representative PSEO is of the broader population of college graduates across an array of institutional and individual characteristics.
View Full
Paper PDF
-
Peer Income Exposure Across the Income Distribution
February 2025
Working Paper Number:
CES-25-16
Children from families across the income distribution attend public schools, making schools and classrooms potential sites for interaction between more- and less-affluent children. However, limited information exists regarding the extent of economic integration in these contexts. We merge educational administrative data from Oregon with measures of family income derived from IRS records to document student exposure to economically diverse school and classroom peers. Our findings indicate that affluent children in public schools are relatively isolated from their less affluent peers, while low- and middle-income students experience relatively even peer income distributions. Students from families in the top percentile of the income distribution attend schools where 20 percent of their peers, on average, come from the top five income percentiles. A large majority of the differences in peer exposure that we observe arise from the sorting of students across schools; sorting across classrooms within schools plays a substantially smaller role.
View Full
Paper PDF
-
Potential Bias When Using Administrative Data to Measure the Family Income of School-Aged Children
January 2025
Working Paper Number:
CES-25-03
Researchers and practitioners increasingly rely on administrative data sources to measure family income. However, administrative data sources are often incomplete in their coverage of the population, giving rise to potential bias in family income measures, particularly if coverage deficiencies are not well understood. We focus on the school-aged child population, due to its particular import to research and policy, and because of the unique challenges of linking children to family income information. We find that two of the most significant administrative sources of family income information that permit linking of children and parents'IRS Form 1040 and SNAP participation records'usefully complement each other, potentially reducing coverage bias when used together. In a case study considering how best to measure economic disadvantage rates in the public school student population, we demonstrate the sensitivity of family income statistics to assumptions about individuals who do not appear in administrative data sources.
View Full
Paper PDF
-
The Census Historical Environmental Impacts Frame
October 2024
Working Paper Number:
CES-24-66
The Census Bureau's Environmental Impacts Frame (EIF) is a microdata infrastructure that combines individual-level information on residence, demographics, and economic characteristics with environmental amenities and hazards from 1999 through the present day. To better understand the long-run consequences and intergenerational effects of exposure to a changing environment, we expand the EIF by extending it backward to 1940. The Historical Environmental Impacts Frame (HEIF) combines the Census Bureau's historical administrative data, publicly available 1940 address information from the 1940 Decennial Census, and historical environmental data. This paper discusses the creation of the HEIF as well as the unique challenges that arise with using the Census Bureau's historical administrative data.
View Full
Paper PDF
-
Comparison of Child Reporting in the American Community Survey and Federal Income Tax Returns Based on California Birth Records
September 2024
Working Paper Number:
CES-24-55
This paper takes advantage of administrative records from California, a state with a large child population and a significant historical undercount of children in Census Bureau data, dependent information in the Internal Revenue Service (IRS) Form 1040 records, and the American Community Survey to characterize undercounted children and compare child reporting. While IRS Form 1040 records offer potential utility for adjusting child undercounting in Census Bureau surveys, this analysis finds overlapping reporting issues among various demographic and economic groups. Specifically, older children, those of Non-Hispanic Black mothers and Hispanic mothers, children or parents with lower English proficiency, children whose mothers did not complete high school, and families with lower income-to-poverty ratio were less frequently reported in IRS 1040 records than other groups. Therefore, using IRS 1040 dependent records may have limitations for accurately representing populations with characteristics associated with the undercount of children in surveys.
View Full
Paper PDF
-
Household Wealth and Entrepreneurial Career Choices: Evidence from Climate Disasters
July 2024
Working Paper Number:
CES-24-39
This study investigates how household wealth affects the human capital of startups, based on U.S. Census individual-level employment data, deed records, and geographic information system (GIS) data. Using floods as a wealth shock, a regression discontinuity analysis shows inundated residents are 7% less likely to work in startups relative to their neighbors outside the flood boundary, within a 0.1-mile-wide band. The effect is more pronounced for homeowners, consistent with the wealth effect. The career distortion leads to a significant long-run income loss, highlighting the importance of self-insurance for human capital allocation.
View Full
Paper PDF
-
Measuring Income of the Aged in Household Surveys: Evidence from Linked Administrative Records
June 2024
Working Paper Number:
CES-24-32
Research has shown that household survey estimates of retirement income (defined benefit pensions and defined contribution account withdrawals) suffer from substantial underreporting which biases downward measures of financial well-being among the aged. Using data from both the redesigned 2016 Current Population Survey Annual Social and Economic Supplement (CPS ASEC) and the Health and Retirement Study (HRS), each matched with administrative records, we examine to what extent underreporting of retirement income affects key statistics such as reliance on Social Security benefits and poverty among the aged. We find that underreporting of retirement income is still prevalent in the CPS ASEC. While the HRS does a better job than the CPS ASEC in terms of capturing retirement income, it still falls considerably short compared to administrative records. Consequently, the relative importance of Social Security income remains overstated in household surveys'53 percent of elderly beneficiaries in the CPS ASEC and 49 percent in the HRS rely on Social Security for the majority of their incomes compared to 42 percent in the linked administrative data. The poverty rate for those aged 65 and over is also overstated'8.8 percent in the CPS ASEC and 7.4 percent in the HRS compared to 6.4 percent in the linked administrative data. Our results illustrate the effects of using alternative data sources in producing key statistics from the Social Security Administration's Income of the Aged publication.
View Full
Paper PDF