CREAT: Census Research Exploration and Analysis Tool

Food Security Status Across the Rural-Urban Continuum Before and During the COVID-19 Pandemic

January 2025

Working Paper Number:

CES-25-01

Abstract

Background: Food security, defined as consistent access to sufficient food to support an active life, is a crucial social determinant of health. A key dimension affecting food security is position along the rural-urban continuum, as there are important socio-economic and environmental differences between communities related to urbanicity or rurality that impact food access. The COVID-19 pandemic created social and economic shocks that altered financial and food security, which may have had differential effects by rurality and urbanicity. However, there has been limited research on how food security differs across the shades of the rural-urban community spectrum, as most often researchers have characterized communities as either urban or rural. Methods: In this study, which linked restricted use Current Population Survey Food Security Supplement data to census-tract level United States Department of Agriculture Rural-Urban Commuting Area codes, we estimated the prevalence of household food security across temporal (2015-2019 versus 2020-2021) and socio-spatial (urban, large rural city/town, small rural town, or isolated rural town/area) dimensions in order to characterize variations before and during the COVID-19 pandemic by urbanicity/rurality. We report prevalences as point estimates with 95% confidence intervals. Results: The prevalence of food security was 87.7% (87.5-88.0%) in 2015-2019 and 88.8% (88.4-89.3%) in 2020-2021 for urban areas, 85.5% (84.7-86.2%) in 2015-2019 and 87.1% (85.7-88.3%) in 2020-2021 for large rural towns/cities, 82.8% (81.5-84.1%) in 2015-2019 and 87.3% (85.7-89.2%) in 2020-2021 for small rural towns, and 87.6% (86.3-88.8%) in 2015-2019 and 90.9% (88.7-92.7%) in 2020-2021 for isolated rural towns/areas. Conclusion: These findings show that rural communities experiences of food security vary and aggregating households in these environments may mask areas of concern and concentrated need.

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
agriculture, rural, urban, town, urbanization, city, socioeconomic, poverty, geographic, risk, disparity, residence, community, prevalence, pandemic

Tags Tags are automatically generated using a pretrained language model from spaCy, which excels at several tasks, including entity tagging.

The model is able to label words and phrases by part-of-speech, including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are identified to contain references to specific institutions, datasets, and other organizations.
:
Bureau of Labor Statistics, Current Population Survey, United States Census Bureau, Special Sworn Status, Census Bureau Disclosure Review Board, Supplemental Nutrition Assistance Program, Federal Statistical Research Data Center

Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with 🔥 are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'Food Security Status Across the Rural-Urban Continuum Before and During the COVID-19 Pandemic' are listed below in order of similarity.