-
School-Based Disability Identification Varies by Student Family Income
December 2025
Authors:
Quentin Brummet,
Andrew Penner,
Emily Penner,
Leah R. Clark,
Michelle Spiegel,
Paul Y. Yoo,
Paul Hanselman,
Nicholas J. Ainsworth,
Christopher Cleveland,
Jacob Hibel,
Andrew Saultz,
Juan Camilo Cristancho
Working Paper Number:
CES-25-74
Currently, 18 percent of K-12 students in the United States receive additional supports through the identification of a disability. Socioeconomic status is viewed as central to understanding who gets identified as having a disability, yet limited large-scale evidence examines how disability identification varies for students from different income backgrounds. Using unique data linking information on Oregon students and their family income, we document pronounced income-based differences in how students are categorized for two school-based disability supports: special education services and Section 504 plans. We find that a quarter of students in the lowest income percentile receive supports through special education, compared with less than seven percent of students in the top income percentile. This pattern may partially reflect differences in underlying disability-related needs caused by poverty. However, we find the opposite pattern for 504 plans, where students in the top income percentiles are two times more likely to receive 504 plan supports. We further document substantial variation in these income-based differences by disability category, by race/ethnicity, and by grade level. Together, these patterns suggest that disability-related needs alone cannot account for the income-based differences that we observe and highlight the complex ways that income shapes the school and family processes that lead to variability in disability classification and services.
View Full
Paper PDF
-
Gifted Identification Across the Distribution of Family Income
December 2025
Authors:
Quentin Brummet,
Andrew Penner,
Emily Penner,
Leah R. Clark,
Michelle Spiegel,
Paul Hanselman,
Nicholas J. Ainsworth,
Aaron J. Ainsworth,
Christopher Cleveland,
Jacob Hibel,
Andrew Saultz
Working Paper Number:
CES-25-73
Currently, 6.1 percent of K-12 students in the United States receive gifted education. Using education and IRS data that provide information on students and their family income, we show pronounced differences in who schools identify as gifted across the distribution of family income. Under 4 percent of students in the lowest income percentile are identified as gifted, compared with 20 percent of those in the top income percentile. Income-based differences persist after accounting for student test scores and exist across students of different sexes and racial/ethnic groups, underscoring the importance of family resources for gifted identification in schools.
View Full
Paper PDF
-
Investigating the Use of Administrative Records in the Consumer Expenditure Survey
March 2018
Working Paper Number:
carra-2018-01
In this paper, we investigate the potential of applying administrative records income data to the Consumer Expenditure (CE) survey to inform measurement error properties of CE estimates, supplement respondent-collected data, and estimate the representativeness of the CE survey by income level. We match individual responses to Consumer Expenditure Quarterly Interview Survey data collected from July 2013 through December 2014 to IRS administrative data in order to analyze CE questions on wages, social security payroll deductions, self-employment income receipt and retirement income. We find that while wage amounts are largely in alignment between the CE and administrative records in the middle of the wage distribution, there is evidence that wages are over-reported to the CE at the bottom of the wage distribution and under-reported at the top of the wage distribution. We find mixed evidence for alignment between the CE and administrative records on questions covering payroll deductions and self-employment income receipt, but find substantial divergence between CE responses and administrative records when examining retirement income. In addition to the analysis using person-based linkages, we also match responding and non-responding CE sample units to the universe of IRS 1040 tax returns by address to examine non-response bias. We find that non-responding households are substantially richer than responding households, and that very high income households are less likely to respond to the CE.
View Full
Paper PDF
-
Capturing More Than Poverty: School Free and Reduced-Price Lunch Data and Household Income
December 2017
Working Paper Number:
carra-2017-09
Educational researchers often use National School Lunch Program (NSLP) data as a proxy for student poverty. Under NSLP policy, students whose household income is less than 130 percent of the poverty line qualify for free lunch and students whose household income is between 130 percent and 185 percent of the poverty line qualify for reduced-price lunch. Linking school administrative records for all 8th graders in a California public school district to household-level IRS income tax data, we examine how well NSLP data capture student disadvantage. We find both that there is substantial disadvantage in household income not captured by NSLP category data, and that NSLP categories capture disadvantage on test scores above and beyond household income.
View Full
Paper PDF
-
The Effect of Low-Income Housing on Neighborhood Mobility:
Evidence from Linked Micro-Data
May 2016
Working Paper Number:
carra-2016-02
While subsidized low-income housing construction provides affordable living conditions for poor households, many observers worry that building low-income housing in poor communities induces individuals to move to poor neighborhoods. We examine this issue using detailed, nationally representative microdata constructed from linked decennial censuses. Our analysis exploits exogenous variation in low-income housing supply induced by program eligibility rules for Low-Income Housing Tax Credits to estimate the effect of subsidized housing on neighborhood mobility patterns. The results indicate little evidence to suggest a causal effect of additional low-income housing construction on the characteristics of neighborhoods to which households move. This result is true for households across the income distribution, and supports the hypothesis that subsidized housing provides affordable living conditions without encouraging households to move to less-affluent neighborhoods than they would have otherwise.
View Full
Paper PDF
-
Revisiting the Effects of Unemployment Insurance Extensions on Unemployment: A Measurement Error-Corrected Regression Discontinuity Approach
March 2016
Working Paper Number:
carra-2016-01
The extension of Unemployment Insurance (UI) benefits was a key policy response to the Great Recession. However, these benefit extensions may have had detrimental labor market effects. While evidence on the individual labor supply response indicates small effects on unemployment, recent work by Hagedorn et al. (2015) uses a county border pair identification strategy to find that the total effects inclusive of effects on labor demand are substantially larger. By focusing on variation within border county pairs, this identification strategy requires counties in the pairs to be similar in terms of unobservable factors. We explore this assumption using an alternative regression discontinuity approach that controls for changes in unobservables by distance to the border. To do so, we must account for measurement error induced by using county-level aggregates. These new results provide no evidence of a large change in unemployment induced by differences in UI generosity across state boundaries. Further analysis suggests that individuals respond to UI benefit differences across boundaries by targeting job search in high-benefit states, thereby raising concerns of treatment spillovers in this setting. Taken together, these two results suggest that the effect of UI benefit extensions on unemployment remains an open question.
View Full
Paper PDF
-
Estimation and Inference in Regression Discontinuity Designs with Clustered Sampling
August 2015
Working Paper Number:
carra-2015-06
Regression Discontinuity (RD) designs have become popular in empirical studies due to their attractive properties for estimating causal effects under transparent assumptions. Nonetheless, most popular procedures assume i.i.d. data, which is not reasonable in many common applications. To relax this assumption, we derive the properties of traditional non-parametric estimators in a setting that incorporates potential clustering at the level of the running variable, and propose an accompanying optimal-MSE bandwidth selection rule. Simulation results demonstrate that falsely assuming data are i.i.d. when selecting the bandwidth may lead to the choice of bandwidths that are too small relative to the optimal-MSE bandwidth. Last, we apply our procedure using person-level microdata that exhibits clustering at the census tract level to analyze the impact of the Low-Income Housing Tax Credit program on neighborhood characteristics and low-income housing supply.
View Full
Paper PDF
-
Matching Addresses between Household Surveys and Commercial Data
July 2015
Working Paper Number:
carra-2015-04
Matching third-party data sources to household surveys can benefit household surveys in a number of ways, but the utility of these new data sources depends critically on our ability to link units between data sets. To understand this better, this report discusses potential modifications to the existing match process that could potentially improve our matches. While many changes to the matching procedure produce marginal improvements in match rates, substantial increases in match rates can only be achieved by relaxing the definition of a successful match. In the end, the results show that the most important factor determining the success of matching procedures is the quality and composition of the data sets being matched.
View Full
Paper PDF
-
Evaluation of Commercial School and Teacher Lists to Enhance Survey Frames
July 2014
Working Paper Number:
carra-2014-07
This report summarizes the potential for teacher lists obtained from commercial vendors for enhancing sampling frames for the National Teacher and Principal Survey (NTPS). We investigate three separate vendor lists, and compare coverage rates across a range of school and teacher characteristics. Across all vendors, coverage rates are higher for regular, non-charter schools. Vendor A stands out as having higher coverage rates than the other two, and we recommend further evaluating Vendor A's teacher lists during the upcoming 2014-2015 NTPS Field Test.
View Full
Paper PDF
-
Comparison of Survey, Federal, and Commercial Address Data Quality
June 2014
Working Paper Number:
carra-2014-06
This report summarizes matching of survey, commercial, and administrative records housing units to the Census Bureau Master Address File (MAF). We document overall MAF match rates in each data set and evaluate differences in match rates across a variety of housing characteristics. Results show that over 90 percent of records in survey data from the American Housing Survey (AHS) match to the MAF. Commercial data from CoreLogic matches at much lower rates, in part due to missing address information and poor match rates for multi-unit buildings. MAF match rates for administrative records from the Department of Housing and Urban Development are also high, and open the possibility of using this information in surveys such as the AHS.
View Full
Paper PDF