In this paper, we investigate the potential of applying administrative records income data to the Consumer Expenditure (CE) survey to inform measurement error properties of CE estimates, supplement respondent-collected data, and estimate the representativeness of the CE survey by income level. We match individual responses to Consumer Expenditure Quarterly Interview Survey data collected from July 2013 through December 2014 to IRS administrative data in order to analyze CE questions on wages, social security payroll deductions, self-employment income receipt and retirement income. We find that while wage amounts are largely in alignment between the CE and administrative records in the middle of the wage distribution, there is evidence that wages are over-reported to the CE at the bottom of the wage distribution and under-reported at the top of the wage distribution. We find mixed evidence for alignment between the CE and administrative records on questions covering payroll deductions and self-employment income receipt, but find substantial divergence between CE responses and administrative records when examining retirement income. In addition to the analysis using person-based linkages, we also match responding and non-responding CE sample units to the universe of IRS 1040 tax returns by address to examine non-response bias. We find that non-responding households are substantially richer than responding households, and that very high income households are less likely to respond to the CE.
-
Self-Employment Income Reporting on Surveys
April 2023
Working Paper Number:
CES-23-19
We examine the relation between administrative income data and survey reports for self-employed and wage-earning respondents from 2000 - 2015. The self-employed report 40 percent more wages and self-employment income in the survey than in tax administrative records; this estimate nets out differences between these two sources that are also shared by wage-earners. We provide evidence that differential reporting incentives are an important explanation of the larger self-employed gap by exploiting a well-known artifact ' self-employed respondents exhibit substantial bunching at the
first EITC kink in their administrative records. We do not observe the same behavior in their survey responses even after accounting for survey measurement concerns.
View Full
Paper PDF
-
Measuring Income of the Aged in Household Surveys: Evidence from Linked Administrative Records
June 2024
Working Paper Number:
CES-24-32
Research has shown that household survey estimates of retirement income (defined benefit pensions and defined contribution account withdrawals) suffer from substantial underreporting which biases downward measures of financial well-being among the aged. Using data from both the redesigned 2016 Current Population Survey Annual Social and Economic Supplement (CPS ASEC) and the Health and Retirement Study (HRS), each matched with administrative records, we examine to what extent underreporting of retirement income affects key statistics such as reliance on Social Security benefits and poverty among the aged. We find that underreporting of retirement income is still prevalent in the CPS ASEC. While the HRS does a better job than the CPS ASEC in terms of capturing retirement income, it still falls considerably short compared to administrative records. Consequently, the relative importance of Social Security income remains overstated in household surveys'53 percent of elderly beneficiaries in the CPS ASEC and 49 percent in the HRS rely on Social Security for the majority of their incomes compared to 42 percent in the linked administrative data. The poverty rate for those aged 65 and over is also overstated'8.8 percent in the CPS ASEC and 7.4 percent in the HRS compared to 6.4 percent in the linked administrative data. Our results illustrate the effects of using alternative data sources in producing key statistics from the Social Security Administration's Income of the Aged publication.
View Full
Paper PDF
-
The Demographics of the Recipients of the First Economic Impact Payment
May 2023
Working Paper Number:
CES-23-24
Starting in April 2020, the federal government began to distribute Economic Impact Payments (EIPs) in response to the health and economic crisis caused by COVID-19. More than 160 million payments were disbursed. We produce statistics concerning the receipt of EIPs by individuals and households across key demographic subgroups. We find that payments went out particularly quickly to households with children and lower-income households, and the rate of receipt was quite high for individuals over age 60, likely due to a coordinated effort to issue payments automatically to Social Security recipients. We disaggregate statistics by race/ethnicity to document whether racial disparities arose in EIP disbursement. Receipt rates were high overall, with limited differences across racial/ethnic subgroups. We provide a set of detailed counts in tables for use by the public.
View Full
Paper PDF
-
Nonresponse and Coverage Bias in the Household Pulse Survey: Evidence from Administrative Data
October 2024
Working Paper Number:
CES-24-60
The Household Pulse Survey (HPS) conducted by the U.S. Census Bureau is a unique survey that provided timely data on the effects of the COVID-19 Pandemic on American households and continues to provide data on other emergent social and economic issues. Because the survey has a response rate in the single digits and only has an online response mode, there are concerns about nonresponse and coverage bias. In this paper, we match administrative data from government agencies and third-party data to HPS respondents to examine how representative they are of the U.S. population. For comparison, we create a benchmark of American Community Survey (ACS) respondents and nonrespondents and include the ACS respondents as another point of reference. Overall, we find that the HPS is less representative of the U.S. population than the ACS. However, performance varies across administrative variables, and the existing weighting adjustments appear to greatly improve the representativeness of the HPS. Additionally, we look at household characteristics by their email domain to examine the effects on coverage from limiting email messages in 2023 to addresses from the contact frame with at least 90% deliverability rates, finding no clear change in the representativeness of the HPS afterwards.
View Full
Paper PDF
-
Mobility, Opportunity, and Volatility Statistics (MOVS):
Infrastructure Files and Public Use Data
April 2024
Working Paper Number:
CES-24-23
Federal statistical agencies and policymakers have identified a need for integrated systems of household and personal income statistics. This interest marks a recognition that aggregated measures of income, such as GDP or average income growth, tell an incomplete story that may conceal large gaps in well-being between different types of individuals and families. Until recently, longitudinal income data that are rich enough to calculate detailed income statistics and include demographic characteristics, such as race and ethnicity, have not been available. The Mobility, Opportunity, and Volatility Statistics project (MOVS) fills this gap in comprehensive income statistics. Using linked demographic and tax records on the population of U.S. working-age adults, the MOVS project defines households and calculates household income, applying an equivalence scale to create a personal income concept, and then traces the progress of individuals' incomes over time. We then output a set of intermediate statistics by race-ethnicity group, sex, year, base-year state of residence, and base-year income decile. We select the intermediate statistics most useful in developing more complex intragenerational income mobility measures, such as transition matrices, income growth curves, and variance-based volatility statistics. We provide these intermediate statistics as part of a publicly released data tool with downloadable flat files and accompanying documentation. This paper describes the data build process and the output files, including a brief analysis highlighting the structure and content of our main statistics.
View Full
Paper PDF
-
Coverage and Agreement of Administrative Records and 2010 American Community Survey Demographic Data
November 2014
Working Paper Number:
carra-2014-14
The U.S. Census Bureau is researching possible uses of administrative records in decennial census and survey operations. The 2010 Census Match Study and American Community Survey (ACS) Match Study represent recent efforts by the Census Bureau to evaluate the extent to which administrative records provide data on persons and addresses in the 2010 Census and 2010 ACS. The 2010 Census Match Study also examines demographic response data collected in administrative records. Building on this analysis, we match data from the 2010 ACS to federal administrative records and third party data as well as to previous census data and examine administrative records coverage and agreement of ACS age, sex, race, and Hispanic origin responses. We find high levels of coverage and agreement for sex and age responses and variable coverage and agreement across race and Hispanic origin groups. These results are similar to findings from the 2010 Census Match Study.
View Full
Paper PDF
-
Earnings Through the Stages: Using Tax Data to Test for Sources of Error in CPS ASEC Earnings and Inequality Measures
September 2024
Working Paper Number:
CES-24-52
In this paper, I explore the impact of generalized coverage error, item non-response bias, and measurement error on measures of earnings and earnings inequality in the CPS ASEC. I match addresses selected for the CPS ASEC to administrative data from 1040 tax returns. I then compare earnings statistics in the tax data for wage and salary earnings in samples corresponding to seven stages of the CPS ASEC survey production process. I also compare the statistics using the actual survey responses. The statistics I examine include mean earnings, the Gini coefficient, percentile earnings shares, and shares of the survey weight for a range of percentiles. I examine how the accuracy of the statistics calculated using the survey data is affected by including imputed responses for both those who did not respond to the full CPS ASEC and those who did not respond to the earnings question. I find that generalized coverage error and item nonresponse bias are dominated by measurement error, and that an important aspect of measurement error is households reporting no wage and salary earnings in the CPS ASEC when there are such earnings in the tax data. I find that the CPS ASEC sample misses earnings at the high end of the distribution from the initial selection stage and that the final survey weights exacerbate this.
View Full
Paper PDF
-
CTC and ACTC Participation Results and IRS-Census Match Methodology, Tax Year 2020
December 2024
Working Paper Number:
CES-24-76
The Child Tax Credit (CTC) and Additional Child Tax Credit (ACTC) offer assistance to help ease the financial burden of families with children. This paper provides taxpayer and dollar participation estimates for the CTC and ACTC covering tax year 2020. The estimates derive from an approach that relies on linking the 2021 Current Population Survey Annual Social and Economic Supplement (CPS ASEC) to IRS administrative data. This approach, called the Exact Match, uses survey data to identify CTC/ACTC eligible taxpayers and IRS administrative data to indicate which eligible taxpayers claimed and received the credit. Overall in tax year 2020, eligible taxpayers participated in the CTC and ACTC program at a rate of 93 percent while dollar participation was 91 percent.
View Full
Paper PDF
-
Comparison of Survey, Federal, and Commercial Address Data Quality
June 2014
Working Paper Number:
carra-2014-06
This report summarizes matching of survey, commercial, and administrative records housing units to the Census Bureau Master Address File (MAF). We document overall MAF match rates in each data set and evaluate differences in match rates across a variety of housing characteristics. Results show that over 90 percent of records in survey data from the American Housing Survey (AHS) match to the MAF. Commercial data from CoreLogic matches at much lower rates, in part due to missing address information and poor match rates for multi-unit buildings. MAF match rates for administrative records from the Department of Housing and Urban Development are also high, and open the possibility of using this information in surveys such as the AHS.
View Full
Paper PDF
-
Errors in Survey Reporting and Imputation and Their Effects on Estimates of Food Stamp Program Participation
April 2011
Working Paper Number:
CES-11-14
Benefit receipt in major household surveys is often underreported. This misreporting leads to biased estimates of the economic circumstances of disadvantaged populations, program takeup, and the distributional effects of government programs, and other program effects. We use administrative data on Food Stamp Program (FSP) participation matched to American Community Survey (ACS) and Current Population Survey (CPS) household data. We show that nearly thirty-five percent of true recipient households do not report receipt in the ACS and fifty percent do not report receipt in the CPS. Misreporting, both false negatives and false positives, varies with individual characteristics, leading to complicated biases in FSP analyses. We then directly examine the determinants of program receipt using our combined administrative and survey data. The combined data allow us to examine accurate participation using individual characteristics missing in administrative data. Our results differ from conventional estimates using only survey data, as such estimates understate participation by single parents, non-whites, low income households, and other groups. To evaluate the use of Census Bureau imputed ACS and CPS data, we also examine whether our estimates using survey data alone are closer to those using the accurate combined data when imputed survey observations are excluded. Interestingly, excluding the imputed observations leads to worse ACS estimates, but has less effect on the CPS estimates.
View Full
Paper PDF