CREAT: Census Research Exploration and Analysis Tool

Papers Containing Keywords(s): 'housing survey'

The following papers contain search terms that you selected. From the papers listed below, you can navigate to the PDF, the profile page for that working paper, or see all the working papers written by an author. You can also explore tags, keywords, and authors that occur frequently within these papers.
Click here to search again

Frequently Occurring Concepts within this Search

No authors occur more than twice in this search.

Viewing papers 1 through 10 of 10


  • Working Paper

    Comparing the 2019 American Housing Survey to Contemporary Sources of Property Tax Records: Implications for Survey Efficiency and Quality

    June 2022

    Working Paper Number:

    CES-22-22

    Given rising nonresponse rates and concerns about respondent burden, government statistical agencies have been exploring ways to supplement household survey data collection with administrative records and other sources of third-party data. This paper evaluates the potential of property tax assessment records to improve housing surveys by comparing these records to responses from the 2019 American Housing Survey. Leveraging the U.S. Census Bureau's linkage infrastructure, we compute the fraction of AHS housing units that could be matched to a unique property parcel (coverage rate), as well as the extent to which survey and property tax data contain the same information (agreement rate). We analyze heterogeneity in coverage and agreement across states, housing characteristics, and 11 AHS items of interest to housing researchers. Our results suggest that partial replacement of AHS data with property data, targeted toward certain survey items or single-family detached homes, could reduce respondent burden without altering data quality. Further research into partial-replacement designs is needed and should proceed on an item-by-item basis. Our work can guide this research as well as those who wish to conduct independent research with property tax records that is representative of the U.S. housing stock.
    View Full Paper PDF
  • Working Paper

    Immigration and the Demand for Urban Housing

    August 2021

    Authors: Miles M. Finney

    Working Paper Number:

    CES-21-23

    The immigrant population has grown dramatically in the US in the last fifty years. This study estimates housing demand among immigrants and discusses how immigration may be altering the structure of US urban areas. Immigrants are found to consume less housing per capita than native born US residents.
    View Full Paper PDF
  • Working Paper

    The Need to Account for Complex Sampling Features when Analyzing Establishment Survey Data: An Illustration using the 2013 Business Research and Development and Innovation Survey (BRDIS)

    January 2017

    Working Paper Number:

    CES-17-62

    The importance of correctly accounting for complex sampling features when generating finite population inferences based on complex sample survey data sets has now been clearly established in a variety of fields, including those in both statistical and non statistical domains. Unfortunately, recent studies of analytic error have suggested that many secondary analysts of survey data do not ultimately account for these sampling features when analyzing their data, for a variety of possible reasons (e.g., poor documentation, or a data producer may not provide the information in a publicuse data set). The research in this area has focused exclusively on analyses of household survey data, and individual respondents. No research to date has considered how analysts are approaching the data collected in establishment surveys, and whether published articles advancing science based on analyses of establishment behaviors and outcomes are correctly accounting for complex sampling features. This article presents alternative analyses of real data from the 2013 Business Research and Development and Innovation Survey (BRDIS), and shows that a failure to account for the complex design features of the sample underlying these data can lead to substantial differences in inferences about the target population of establishments for the BRDIS.
    View Full Paper PDF
  • Working Paper

    Evaluating the Use of Commercial Data to Improve Survey Estimates of Property Taxes

    August 2016

    Working Paper Number:

    carra-2016-06

    While commercial data sources offer promise to statistical agencies for use in production of official statistics, challenges can arise as the data are not collected for statistical purposes. This paper evaluates the use of 2008-2010 property tax data from CoreLogic, Inc. (CoreLogic), aggregated from county and township governments from around the country, to improve 2010 American Community Survey (ACS) estimates of property tax amounts for single-family homes. Particularly, the research evaluates the potential to use CoreLogic to reduce respondent burden, to study survey response error and to improve adjustments for survey nonresponse. The research found that the coverage of the CoreLogic data varies between counties as does the correspondence between ACS and CoreLogic property taxes. This geographic variation implies that different approaches toward using CoreLogic are needed in different areas of the country. Further, large differences between CoreLogic and ACS property taxes in certain counties seem to be due to conceptual differences between what is collected in the two data sources. The research examines three counties, Clark County, NV, Philadelphia County, PA and St. Louis County, MO, and compares how estimates would change with different approaches using the CoreLogic data. Mean county property tax estimates are highly sensitive to whether ACS or CoreLogic data are used to construct estimates. Using CoreLogic data in imputation modeling for nonresponse adjustment of ACS estimates modestly improves the predictive power of imputation models, although estimates of county property taxes and property taxes by mortgage status are not very sensitive to the imputation method.
    View Full Paper PDF
  • Working Paper

    Matching Addresses between Household Surveys and Commercial Data

    July 2015

    Authors: Quentin Brummet

    Working Paper Number:

    carra-2015-04

    Matching third-party data sources to household surveys can benefit household surveys in a number of ways, but the utility of these new data sources depends critically on our ability to link units between data sets. To understand this better, this report discusses potential modifications to the existing match process that could potentially improve our matches. While many changes to the matching procedure produce marginal improvements in match rates, substantial increases in match rates can only be achieved by relaxing the definition of a successful match. In the end, the results show that the most important factor determining the success of matching procedures is the quality and composition of the data sets being matched.
    View Full Paper PDF
  • Working Paper

    Comparison of Survey, Federal, and Commercial Address Data Quality

    June 2014

    Authors: Quentin Brummet

    Working Paper Number:

    carra-2014-06

    This report summarizes matching of survey, commercial, and administrative records housing units to the Census Bureau Master Address File (MAF). We document overall MAF match rates in each data set and evaluate differences in match rates across a variety of housing characteristics. Results show that over 90 percent of records in survey data from the American Housing Survey (AHS) match to the MAF. Commercial data from CoreLogic matches at much lower rates, in part due to missing address information and poor match rates for multi-unit buildings. MAF match rates for administrative records from the Department of Housing and Urban Development are also high, and open the possibility of using this information in surveys such as the AHS.
    View Full Paper PDF
  • Working Paper

    FALLING HOUSE PRICES AND LABOR MOBILITY: EVIDENCE FROM MATCHED EMPLOYER-EMPLOYEE DATA

    August 2013

    Working Paper Number:

    CES-13-43

    This study uses worker-level employment data from the U.S. Census Bureau to test whether falling home prices affect a worker's propensity to take a job in a different metropolitan area from where he is currently located. Using a sample of workers from the American Community Survey, I employ a within-MSA-time estimation that compares homeowners to renters in their propensities to relocate for jobs according to data from the Longitudinal Employer Household Dynamics database. This strategy allows me to disentangle the influence of house prices from that of other time-varying, location-specific shocks. Estimates show that homeowners who have experienced declines in the nominal value of their home are approximately 20% less likely to take a new job in a location outside of the metropolitan area that they currently live and work in, relative to an equivalent renter. This evidence is consistent with the hypothesis that housing lock-in has contributed to the decreased labor mobility of homeowners during the recent housing bust.
    View Full Paper PDF
  • Working Paper

    The Dynamics of House Price Capitalization and Locational Sorting: Evidence from Air Quality Changes

    September 2012

    Authors: Corey Lang

    Working Paper Number:

    CES-12-22

    Despite extensive use of housing data to reveal valuation of non-market goods, the process of house price capitalization remains vague. Using the restricted access American Housing Survey, a high-frequency panel of prices, turnover, and occupant characteristics, this paper examines the time path of capitalization and preference-based sorting in response to air quality changes caused by differential regulatory pressure from the 1990 Clean Air Act Amendments. The results demonstrate that owner-occupied units capitalize changes immediately, whereas rent capitalization lags. The delayed but sharp rent capitalization temporally coincides with evidence of sorting, suggesting a strong link between location choices and price dynamics.
    View Full Paper PDF
  • Working Paper

    The Effect of Power Plants on Local Housing Values and Rents: Evidence from Restricted Census Microdata

    July 2008

    Authors: Lucas Davis

    Working Paper Number:

    CES-08-19

    Current trends in electricity consumption imply that hundreds of new fossil-fuel power plants will be built in the United States over the next several decades. Power plant siting has become increasingly contentious, in part because power plants are a source of numerous negative local externalities including elevated levels of air pollution, haze, noise and traffic. Policymakers attempt to take these local disamenities into account when siting facilities, but little reliable evidence is available about their quantitative importance. This paper examines neighborhoods in the United States where power plants were opened during the 1990s using household-level data from a restricted version of the U.S. decennial census. Compared to neighborhoods farther away, housing values and rents decreased by 3-5% between 1990 and 2000 in neighborhoods near sites. Estimates of household marginal willingness-to-pay to avoid power plants are reported separately for natural gas and other types of plants, large plants and small plants, base load plants and peaker plants, and upwind and downwind households.
    View Full Paper PDF
  • Working Paper

    Location, Location, Location: The 3L Approach to House Price Determination

    May 2004

    Working Paper Number:

    CES-04-06

    The immobility of houses means that their location affects their values. This explains the common belief that three things determine the price of a house: location, location, and location. We use this notion to develop the 3L Approach to house price determination. That is, prices are determined by the Metropolitan Statistical Area (MSA), town, and street where the house is located. This study creates a unique data set based on data from the American Housing Survey (AHS) consisting of small 'clusters' of housing units with information on their housing characteristics and resident characteristics that is merged with census tract-level attributes. We use this data to verify the 3L Approach: we find that all three levels of location are significant when estimating the house price hedonic equation. This indicates that individuals care about their local neighborhood, i.e. the general upkeep of their street and possibly their neighbors' characteristics (cluster variables), a broader area such as the school district and/or the town (tract variables) that account for school quality and crime rates, and the particular amenities found in their MSA.
    View Full Paper PDF