The importance of correctly accounting for complex sampling features when generating finite population inferences based on complex sample survey data sets has now been clearly established in a variety of fields, including those in both statistical and non statistical domains. Unfortunately, recent studies of analytic error have suggested that many secondary analysts of survey data do not ultimately account for these sampling features when analyzing their data, for a variety of possible reasons (e.g., poor documentation, or a data producer may not provide the information in a publicuse data set). The research in this area has focused exclusively on analyses of household survey data, and individual respondents. No research to date has considered how analysts are approaching the data collected in establishment surveys, and whether published articles advancing science based on analyses of establishment behaviors and outcomes are correctly accounting for complex sampling features. This article presents alternative analyses of real data from the 2013 Business Research and Development and Innovation Survey (BRDIS), and shows that a failure to account for the complex design features of the sample underlying these data can lead to substantial differences in inferences about the target population of establishments for the BRDIS.
-
SYNTHETIC DATA FOR SMALL AREA ESTIMATION IN THE AMERICAN COMMUNITY SURVEY
April 2013
Working Paper Number:
CES-13-19
Small area estimates provide a critical source of information used to study local populations. Statistical agencies regularly collect data from small areas but are prevented from releasing detailed geographical identifiers in public-use data sets due to disclosure concerns. Alternative data dissemination methods used in practice include releasing summary/aggregate tables, suppressing detailed geographic information in public-use data sets, and accessing restricted data via Research Data Centers. This research examines an alternative method for disseminating microdata that contains more geographical details than are currently being released in public-use data files. Specifically, the method replaces the observed survey values with imputed, or synthetic, values simulated from a hierarchical Bayesian model. Confidentiality protection is enhanced because no actual values are released. The method is demonstrated using restricted data from the 2005-2009 American Community Survey. The analytic validity of the synthetic data is assessed by comparing small area estimates obtained from the synthetic data with those obtained from the observed data.
View Full
Paper PDF
-
R&D, Attrition and Multiple Imputation in BRDIS
January 2017
Working Paper Number:
CES-17-13
Multiple imputation in business establishment surveys like BRDIS, an annual business survey in which some companies are sampled every year or multiple years, may enhance the estimates of total R&D in addition to helping researchers estimate models with subpopulations of small sample size. Considering a panel of BRDIS companies throughout the years 2008 to 2013 linked to LBD data, this paper uses the conclusions obtained with missing data visualization and other explorations to come up with a strategy to conduct multiple imputation appropriate to address the item nonresponse in R&D expenditures. Because survey design characteristics are behind much of the item and unit nonresponse, multiple imputation of missing data in BRDIS changes the estimates of total R&D significantly and alters the conclusions reached by models of the determinants of R&D investment obtained with complete case analysis.
View Full
Paper PDF
-
An In-Depth Examination of Requirements for Disclosure Risk Assessment
October 2023
Authors:
Ron Jarmin,
John M. Abowd,
Ian M. Schmutte,
Jerome P. Reiter,
Nathan Goldschlag,
Victoria A. Velkoff,
Michael B. Hawes,
Robert Ashmead,
Ryan Cumings-Menon,
Sallie Ann Keller,
Daniel Kifer,
Philip Leclerc,
Rolando A. RodrÃguez,
Pavel Zhuravlev
Working Paper Number:
CES-23-49
The use of formal privacy to protect the confidentiality of responses in the 2020 Decennial Census of Population and Housing has triggered renewed interest and debate over how to measure the disclosure risks and societal benefits of the published data products. Following long-established precedent in economics and statistics, we argue that any proposal for quantifying disclosure risk should be based on pre-specified, objective criteria. Such criteria should be used to compare methodologies to identify those with the most desirable properties. We illustrate this approach, using simple desiderata, to evaluate the absolute disclosure risk framework, the counterfactual framework underlying differential privacy, and prior-to-posterior comparisons. We conclude that satisfying all the desiderata is impossible, but counterfactual comparisons satisfy the most while absolute disclosure risk satisfies the fewest. Furthermore, we explain that many of the criticisms levied against differential privacy would be levied against any technology that is not equivalent to direct, unrestricted access to confidential data. Thus, more research is needed, but in the near-term, the counterfactual approach appears best-suited for privacy-utility analysis.
View Full
Paper PDF
-
Grassroots Design Meets Grassroots Innovation: Rural Design Orientation and Firm Performance
March 2024
Working Paper Number:
CES-24-17
The study of grassroots design'applying structured, creative processes to the usability or aesthetics of a product without input from professional design consultancies'remains under investigated. If design comprises a mediation between people and technology whereby technologies are made more accessible or more likely to delight, then the process by which new grassroots inventions are transformed into innovations valued in markets cannot be fully understood. This paper uses U.S. data on the design orientation of respondents in the 2014 Rural Establishment Innovation Survey linked to longitudinal data on the same firms to examine the association between design, innovation, and employment and payroll growth. Findings from the research will inform questions to be investigated in the recently collected 2022 Annual Business Survey (ABS) that for the first time contains a Design module.
View Full
Paper PDF
-
An Economist's Primer on Survey Samples
September 2000
Working Paper Number:
CES-00-15
Survey data underlie most empirical work in economics, yet economists typically have little familiarity with survey sample design and its effects on inference. This paper describes how sample designs depart from the simple random sampling model implicit in most econometrics textbooks, points out where the effects of this departure are likely to be greatest, and describes the relationship between design-based estimators developed by survey statisticians and related econometric methods for regression. Its intent is to provide empirical economists with enough background in survey methods to make informed use of design-based estimators. It emphasizes surveys of households (the source of most public-use files), but also considers how surveys of businesses differ. Examples from the National Longitudinal Survey of Youth of 1979 and the Current Population Survey illustrate practical aspects of design-based estimation.
View Full
Paper PDF
-
Gradient Boosting to Address Statistical Problems Arising from Non-Linkage of Census Bureau Datasets
June 2024
Working Paper Number:
CES-24-27
This article introduces the twangRDC package, which contains functions to address non-linkage in US Census Bureau datasets. The Census Bureau's Person Identification Validation System facilitates data linkage by assigning unique person identifiers to federal, third party, decennial census, and survey data. Not all records in these datasets can be linked to the reference file and as such not all records will be assigned an identifier. This article is a tutorial for using the twangRDC to generate nonresponse weights to account for non-linkage of person records across US Census Bureau datasets.
View Full
Paper PDF
-
Using Small-Area Estimation (SAE) to Estimate Prevalence of Child Health Outcomes at the Census Regional-, State-, and County-Levels
November 2022
Working Paper Number:
CES-22-48
In this study, we implement small-area estimation to assess the prevalence of child health outcomes at the county, state, and regional levels, using national survey data.
View Full
Paper PDF
-
Do Environmental Regulations Disproportionately Affect Small Businesses? Evidence from the Pollution Abatement Costs and Expenditures Survey
September 2012
Working Paper Number:
CES-12-25R
It remains an open question whether the impact of environmental regulations differs by the size of the business. Such differences might be expected because of statutory, enforcement, and/or compliance asymmetries. Here, we consider the net effect of these three asymmetries, by estimating the relationship between plant size and pollution abatement expenditures, using establishment-level data on U.S. manufacturers from the Census Bureau's Pollution Abatement Costs and Expenditures (PACE) surveys of 1974-1982, 1984-1986, 1988-1994, 1999, and 2005, combined with data from the Annual Survey of Manufactures and Census of Manufactures. We model establishments' PAOC intensity - that is, their pollution abatement operating costs per unit of economic activity - as a function of establishment size, industry, and year. Our results show that PAOC intensity increases with establishment size. We also find that larger firms spend more per unit of output than do smaller firms.
View Full
Paper PDF
-
Some Open Questions on Multiple-Source Extensions of Adaptive-Survey Design Concepts and Methods
February 2023
Working Paper Number:
CES-23-03
Adaptive survey design is a framework for making data-driven decisions about survey data collection operations. This paper discusses open questions related to the extension of adaptive principles and capabilities when capturing data from multiple data sources. Here, the concept of 'design' encompasses the focused allocation of resources required for the production of high-quality statistical information in a sustainable and cost-effective way. This conceptual framework leads to a discussion of six groups of issues including: (i) the goals for improvement through adaptation; (ii) the design features that are available for adaptation; (iii) the auxiliary data that may be available for informing adaptation; (iv) the decision rules that could guide adaptation; (v) the necessary systems to operationalize adaptation; and (vi) the quality, cost, and risk profiles of the proposed adaptations (and how to evaluate them). A multiple data source environment creates significant opportunities, but also introduces complexities that are a challenge in the production of high-quality statistical information.
View Full
Paper PDF
-
Why are employer-sponsored health insurance premiums higher in the public sector than in the private sector?
February 2019
Working Paper Number:
CES-19-03
In this article, we examine the factors explaining differences in public and private sector health insurance premiums for enrollees with single coverage. We use data from the 2000 and 2014 Medical Expenditure Panel Survey-Insurance Component, along with decomposition methods, to explore the relative explanatory importance of plan features and benefit generosity, such as deductibles and other forms of cost sharing, basic employee characteristics (e.g., age, gender, and education), and unionization. While there was little difference in public and private sector premiums in 2000, by 2014, public premiums had exceeded private premiums by 14 to 19 percent. We find that differences in plan characteristics played a substantial role in explaining premium differences in 2014, but they were not the only, or even the most important, factor. Differences in worker age, gender, marital status, and educational attainment were also important factors, as was workforce unionization.
View Full
Paper PDF