The importance of correctly accounting for complex sampling features when generating finite population inferences based on complex sample survey data sets has now been clearly established in a variety of fields, including those in both statistical and non statistical domains. Unfortunately, recent studies of analytic error have suggested that many secondary analysts of survey data do not ultimately account for these sampling features when analyzing their data, for a variety of possible reasons (e.g., poor documentation, or a data producer may not provide the information in a publicuse data set). The research in this area has focused exclusively on analyses of household survey data, and individual respondents. No research to date has considered how analysts are approaching the data collected in establishment surveys, and whether published articles advancing science based on analyses of establishment behaviors and outcomes are correctly accounting for complex sampling features. This article presents alternative analyses of real data from the 2013 Business Research and Development and Innovation Survey (BRDIS), and shows that a failure to account for the complex design features of the sample underlying these data can lead to substantial differences in inferences about the target population of establishments for the BRDIS.
-
SYNTHETIC DATA FOR SMALL AREA ESTIMATION IN THE AMERICAN COMMUNITY SURVEY
April 2013
Working Paper Number:
CES-13-19
Small area estimates provide a critical source of information used to study local populations. Statistical agencies regularly collect data from small areas but are prevented from releasing detailed geographical identifiers in public-use data sets due to disclosure concerns. Alternative data dissemination methods used in practice include releasing summary/aggregate tables, suppressing detailed geographic information in public-use data sets, and accessing restricted data via Research Data Centers. This research examines an alternative method for disseminating microdata that contains more geographical details than are currently being released in public-use data files. Specifically, the method replaces the observed survey values with imputed, or synthetic, values simulated from a hierarchical Bayesian model. Confidentiality protection is enhanced because no actual values are released. The method is demonstrated using restricted data from the 2005-2009 American Community Survey. The analytic validity of the synthetic data is assessed by comparing small area estimates obtained from the synthetic data with those obtained from the observed data.
View Full
Paper PDF
-
R&D, Attrition and Multiple Imputation in BRDIS
January 2017
Working Paper Number:
CES-17-13
Multiple imputation in business establishment surveys like BRDIS, an annual business survey in which some companies are sampled every year or multiple years, may enhance the estimates of total R&D in addition to helping researchers estimate models with subpopulations of small sample size. Considering a panel of BRDIS companies throughout the years 2008 to 2013 linked to LBD data, this paper uses the conclusions obtained with missing data visualization and other explorations to come up with a strategy to conduct multiple imputation appropriate to address the item nonresponse in R&D expenditures. Because survey design characteristics are behind much of the item and unit nonresponse, multiple imputation of missing data in BRDIS changes the estimates of total R&D significantly and alters the conclusions reached by models of the determinants of R&D investment obtained with complete case analysis.
View Full
Paper PDF
-
An Economist's Primer on Survey Samples
September 2000
Working Paper Number:
CES-00-15
Survey data underlie most empirical work in economics, yet economists typically have little familiarity with survey sample design and its effects on inference. This paper describes how sample designs depart from the simple random sampling model implicit in most econometrics textbooks, points out where the effects of this departure are likely to be greatest, and describes the relationship between design-based estimators developed by survey statisticians and related econometric methods for regression. Its intent is to provide empirical economists with enough background in survey methods to make informed use of design-based estimators. It emphasizes surveys of households (the source of most public-use files), but also considers how surveys of businesses differ. Examples from the National Longitudinal Survey of Youth of 1979 and the Current Population Survey illustrate practical aspects of design-based estimation.
View Full
Paper PDF
-
An In-Depth Examination of Requirements for Disclosure Risk Assessment
October 2023
Authors:
Ron Jarmin,
John M. Abowd,
Ian M. Schmutte,
Jerome P. Reiter,
Nathan Goldschlag,
Victoria A. Velkoff,
Michael B. Hawes,
Robert Ashmead,
Ryan Cumings-Menon,
Sallie Ann Keller,
Daniel Kifer,
Philip Leclerc,
Rolando A. RodrÃguez,
Pavel Zhuravlev
Working Paper Number:
CES-23-49
The use of formal privacy to protect the confidentiality of responses in the 2020 Decennial Census of Population and Housing has triggered renewed interest and debate over how to measure the disclosure risks and societal benefits of the published data products. Following long-established precedent in economics and statistics, we argue that any proposal for quantifying disclosure risk should be based on pre-specified, objective criteria. Such criteria should be used to compare methodologies to identify those with the most desirable properties. We illustrate this approach, using simple desiderata, to evaluate the absolute disclosure risk framework, the counterfactual framework underlying differential privacy, and prior-to-posterior comparisons. We conclude that satisfying all the desiderata is impossible, but counterfactual comparisons satisfy the most while absolute disclosure risk satisfies the fewest. Furthermore, we explain that many of the criticisms levied against differential privacy would be levied against any technology that is not equivalent to direct, unrestricted access to confidential data. Thus, more research is needed, but in the near-term, the counterfactual approach appears best-suited for privacy-utility analysis.
View Full
Paper PDF
-
Investigating the Effect of Innovation Activities of Firms on Innovation Performance: Does Firm Size Matter?
January 2025
Working Paper Number:
CES-25-04
Understanding the relationship between a firm's innovation activities and its performance has been of great interest to management scholars. While the literature on innovation activities is vast, there is a dearth of studies investigating the effect of key innovation activities of the firm on innovation outcomes in a single study, and whether their effects are dependent on the nature of firms, specifically firm size. Drawing from a longitudinal dataset from the Business Research & Development and Innovation Survey (BRDIS), and informed by contingency theory and resource orchestration theory, we examine the relationship between a firm's innovation activities - including its Research & Development (R&D) investment, securing patents, collaborative R&D, R&D toward new business areas, and grants for R&D - and its product innovation and process innovation. We also investigate whether these relationships are contingent on firm size. Consistent with contingency theory, we find a significant difference between large firms and small firms regarding how they enhance product innovation and process innovation. Large firms can improve product innovation by securing patents through applications and issuances, coupled with active participation in collaborative R&D efforts. Conversely, smaller firms concentrate their efforts on the number of patents applied for, directing R&D efforts toward new business areas, and often leveraging grants for R&D efforts. To achieve process innovation, a similar dichotomy emerges. Larger firms demonstrate a commitment to securing patents, engage in R&D efforts tailored to new business areas, and actively collaborate with external entities on R&D efforts. In contrast, smaller firms primarily focus on securing patents and channel their R&D efforts toward new business pursuits. This nuanced exploration highlights the varied strategies employed by large and small firms in navigating the intricate landscape of both product and process innovation. The results shed light on specific innovation activities as antecedents of innovation outcomes and demonstrate how the effectiveness of such assets is contingent upon firm size.
View Full
Paper PDF
-
Grassroots Design Meets Grassroots Innovation: Rural Design Orientation and Firm Performance
March 2024
Working Paper Number:
CES-24-17
The study of grassroots design'applying structured, creative processes to the usability or aesthetics of a product without input from professional design consultancies'remains under investigated. If design comprises a mediation between people and technology whereby technologies are made more accessible or more likely to delight, then the process by which new grassroots inventions are transformed into innovations valued in markets cannot be fully understood. This paper uses U.S. data on the design orientation of respondents in the 2014 Rural Establishment Innovation Survey linked to longitudinal data on the same firms to examine the association between design, innovation, and employment and payroll growth. Findings from the research will inform questions to be investigated in the recently collected 2022 Annual Business Survey (ABS) that for the first time contains a Design module.
View Full
Paper PDF
-
Validating Abstract Representations of Spatial Population Data while considering Disclosure Avoidance
February 2020
Working Paper Number:
CES-20-05
This paper furthers a research agenda for modeling populations along spatial networks and expands upon an empirical analysis to a full U.S. county (Gaboardi, 2019, Ch. 1,2). Specific foci are the necessity of, and methods for, validating and benchmarking spatial data when conducting social science research with aggregated and ambiguous population representations. In order to promote the validation of publicly-available data, access to highly-restricted census microdata was requested, and granted, in order to determine the levels of accuracy and error associated with a network-based population modeling framework. Primary findings reinforce the utility of a novel network allocation method'populated polygons to networks (pp2n) in terms of accuracy, computational complexity, and real runtime (Gaboardi, 2019, Ch. 2). Also, a pseudo-benchmark dataset's performance against the true census microdata shows promise in modeling populations along networks.
View Full
Paper PDF
-
An Examination of the Informational Value of Self-Reported Innovation Questions
October 2022
Working Paper Number:
CES-22-46
Self-reported innovation measures provide an alternative means for examining the economic performance of firms or regions. While European researchers have been exploiting the data from the Community Innovation Survey for over two decades, uptake of US innovation data has been much slower. This paper uses a restricted innovation survey designed to differentiate incremental innovators from more far-ranging innovators and compares it to responses in the Annual Survey of Entrepreneurs (ASE) and the Business R&D and Innovation Survey (BRDIS) to examine the informational value of these positive innovation measures. The analysis begins by examining the association between the incremental innovation measure in the Rural Establishment Innovation Survey (REIS) and a measure of the inter-industry buying and selling complexity. A parallel analysis using BRDIS and ASE reveals such an association may vary among surveys, providing additional insight on the informational value of various innovation profiles available in self-reported innovation surveys.
View Full
Paper PDF
-
Using Small-Area Estimation (SAE) to Estimate Prevalence of Child Health Outcomes at the Census Regional-, State-, and County-Levels
November 2022
Working Paper Number:
CES-22-48
In this study, we implement small-area estimation to assess the prevalence of child health outcomes at the county, state, and regional levels, using national survey data.
View Full
Paper PDF
-
The Management and Organizational Practices Survey (MOPS): Cognitive Testing*
January 2016
Working Paper Number:
CES-16-53
All Census Bureau surveys must meet quality standards before they can be sent to the public for data collection. This paper outlines the pretesting process that was used to ensure that the Management and Organizational Practices Survey (MOPS) met those standards. The MOPS is the first large survey of management practices at U.S. manufacturing establishments. The first wave of the MOPS, issued for reference year 2010, was subject to internal expert review and two rounds of cognitive interviews. The results of this pretesting were used to make significant changes to the MOPS instrument and ensure that quality data was collected. The second wave of the MOPS, featuring new questions on data in decision making (DDD) and uncertainty and issued for reference year 2015, was subject to two rounds of cognitive interviews and a round of usability testing. This paper illustrates the effort undertaken by the Census Bureau to ensure that all surveys released into the field are of high quality and provides insight into how respondents interpret the MOPS questionnaire for those looking to utilize the MOPS data.
View Full
Paper PDF