Survey data underlie most empirical work in economics, yet economists typically have little familiarity with survey sample design and its effects on inference. This paper describes how sample designs depart from the simple random sampling model implicit in most econometrics textbooks, points out where the effects of this departure are likely to be greatest, and describes the relationship between design-based estimators developed by survey statisticians and related econometric methods for regression. Its intent is to provide empirical economists with enough background in survey methods to make informed use of design-based estimators. It emphasizes surveys of households (the source of most public-use files), but also considers how surveys of businesses differ. Examples from the National Longitudinal Survey of Youth of 1979 and the Current Population Survey illustrate practical aspects of design-based estimation.
-
Estimation and Inference in Regression Discontinuity Designs with Clustered Sampling
August 2015
Working Paper Number:
carra-2015-06
Regression Discontinuity (RD) designs have become popular in empirical studies due to their attractive properties for estimating causal effects under transparent assumptions. Nonetheless, most popular procedures assume i.i.d. data, which is not reasonable in many common applications. To relax this assumption, we derive the properties of traditional non-parametric estimators in a setting that incorporates potential clustering at the level of the running variable, and propose an accompanying optimal-MSE bandwidth selection rule. Simulation results demonstrate that falsely assuming data are i.i.d. when selecting the bandwidth may lead to the choice of bandwidths that are too small relative to the optimal-MSE bandwidth. Last, we apply our procedure using person-level microdata that exhibits clustering at the census tract level to analyze the impact of the Low-Income Housing Tax Credit program on neighborhood characteristics and low-income housing supply.
View Full
Paper PDF
-
SYNTHETIC DATA FOR SMALL AREA ESTIMATION IN THE AMERICAN COMMUNITY SURVEY
April 2013
Working Paper Number:
CES-13-19
Small area estimates provide a critical source of information used to study local populations. Statistical agencies regularly collect data from small areas but are prevented from releasing detailed geographical identifiers in public-use data sets due to disclosure concerns. Alternative data dissemination methods used in practice include releasing summary/aggregate tables, suppressing detailed geographic information in public-use data sets, and accessing restricted data via Research Data Centers. This research examines an alternative method for disseminating microdata that contains more geographical details than are currently being released in public-use data files. Specifically, the method replaces the observed survey values with imputed, or synthetic, values simulated from a hierarchical Bayesian model. Confidentiality protection is enhanced because no actual values are released. The method is demonstrated using restricted data from the 2005-2009 American Community Survey. The analytic validity of the synthetic data is assessed by comparing small area estimates obtained from the synthetic data with those obtained from the observed data.
View Full
Paper PDF
-
Gradient Boosting to Address Statistical Problems Arising from Non-Linkage of Census Bureau Datasets
June 2024
Working Paper Number:
CES-24-27
This article introduces the twangRDC package, which contains functions to address non-linkage in US Census Bureau datasets. The Census Bureau's Person Identification Validation System facilitates data linkage by assigning unique person identifiers to federal, third party, decennial census, and survey data. Not all records in these datasets can be linked to the reference file and as such not all records will be assigned an identifier. This article is a tutorial for using the twangRDC to generate nonresponse weights to account for non-linkage of person records across US Census Bureau datasets.
View Full
Paper PDF
-
A METHOD OF CORRECTING FOR MISREPORTING APPLIED TO THE FOOD STAMP PROGRAM
May 2013
Working Paper Number:
CES-13-28
Survey misreporting is known to be pervasive and bias common statistical analyses. In this paper, I first use administrative data on SNAP receipt and amounts linked to American Community Survey data from New York State to show that survey data can misrepresent the program in important ways. For example, more than 1.4 billion dollars received are not reported in New York State alone. 46 percent of dollars received by house- holds with annual income above the poverty line are not reported in the survey data, while only 19 percent are missing below the poverty line. Standard corrections for measurement error cannot remove these biases. I then develop a method to obtain consistent estimates by combining parameter estimates from the linked data with publicly available data. This conditional density method recovers the correct estimates using public use data only, which solves the problem that access to linked administrative data is usually restricted. I examine the degree to which this approach can be used to extrapolate across time and geography, in order to solve the problem that validation data is often based on a convenience sample. I present evidence from within New York State that the extent of heterogeneity is small enough to make extrapolation work well across both time and geography. Extrapolation to the entire U.S. yields substantive differences to survey data and reduces deviations from official aggregates by a factor of 4 to 9 compared to survey aggregates.
View Full
Paper PDF
-
MISCLASSIFICATION IN BINARY CHOICE MODELS
May 2013
Working Paper Number:
CES-13-27
We derive the asymptotic bias from misclassification of the dependent variable in binary choice models. Measurement error is necessarily non-classical in this case, which leads to bias in linear and non-linear models even if only the dependent variable is mismeasured. A Monte Carlo study and an application to food stamp receipt show that the bias formulas are useful to analyze the sensitivity of substantive conclusions, to interpret biased coefficients and imply features of the estimates that are robust to misclassification. Using administrative records linked to survey data as validation data, we examine estimators that are consistent under misclassification. They can improve estimates if their assumptions hold, but can aggravate the problem if the assumptions are invalid. The estimators differ
in their robustness to such violations, which can be improved by incorporating additional information. We propose tests for the presence and nature of misclassification that can help to choose an estimator.
View Full
Paper PDF
-
Interactions, Neighborhood Selection, and Housing Demand
August 2002
Working Paper Number:
CES-02-19
This paper contributes to the growing literature that identifies and measures the impact of social context on individual economic behavior. We develop a model of housing demand with neighborhood e'ects and neighborhood choice. Modelling neighborhood choice is of fundamental importance in estimating and understanding endogenous and exogenous neighborhood effects. That is, to obtain unbiased estimates of neighborhood effects, it is necessary to control for non-random sorting into neighborhoods. Estimation of the model exploits a unique data set of household data that has been augmented with contextual information at two di'erent levels ('scales') of aggregation. One is at the neighborhood cluster level, of about ten neighbors, with the data coming from a special sample of the American Housing Survey. A second level is the census tract to which these dwelling units belong. Tract-level data are available in the Summary Tape Files of the decennial Census data. We merge these two data sets by gaining access to confidential data of the U.S. Bureau of the Census. We overcome some limitations of these data by implementing some significant methodological advances in estimating discrete choice models. Our results for the neighborhood choice model indicate that individuals prefer to live near others like themselves. This can perpetuate income inequality since those with the best opportunities at economic success will cluster together. The results for the housing demand equation are similar to those in our earlier work [Ioannides and Zabel (2000] where we find evidence of significant endogenous and contextual neighborhood effects.
View Full
Paper PDF
-
Evaluating the Use of Commercial Data to Improve Survey Estimates of Property Taxes
August 2016
Working Paper Number:
carra-2016-06
While commercial data sources offer promise to statistical agencies for use in production of official statistics, challenges can arise as the data are not collected for statistical purposes. This paper evaluates the use of 2008-2010 property tax data from CoreLogic, Inc. (CoreLogic), aggregated from county and township governments from around the country, to improve 2010 American Community Survey (ACS) estimates of property tax amounts for single-family homes. Particularly, the research evaluates the potential to use CoreLogic to reduce respondent burden, to study survey response error and to improve adjustments for survey nonresponse. The research found that the coverage of the CoreLogic data varies between counties as does the correspondence between ACS and CoreLogic property taxes. This geographic variation implies that different approaches toward using CoreLogic are needed in different areas of the country. Further, large differences between CoreLogic and ACS property taxes in certain counties seem to be due to conceptual differences between what is collected in the two data sources. The research examines three counties, Clark County, NV, Philadelphia County, PA and St. Louis County, MO, and compares how estimates would change with different approaches using the CoreLogic data. Mean county property tax estimates are highly sensitive to whether ACS or CoreLogic data are used to construct estimates. Using CoreLogic data in imputation modeling for nonresponse adjustment of ACS estimates modestly improves the predictive power of imputation models, although estimates of county property taxes and property taxes by mortgage status are not very sensitive to the imputation method.
View Full
Paper PDF
-
National Experimental Wellbeing Statistics - Version 1
February 2023
Working Paper Number:
CES-23-04
This is the U.S. Census Bureau's first release of the National Experimental Wellbeing Statistics (NEWS) project. The NEWS project aims to produce the best possible estimates of income and poverty given all available survey and administrative data. We link survey, decennial census, administrative, and third-party data to address measurement error in income and poverty statistics. We estimate improved (pre-tax money) income and poverty statistics for 2018 by addressing several possible sources of bias documented in prior research. We address biases from 1) unit nonresponse through improved weights, 2) missing income information in both survey and administrative data through improved imputation, and 3) misreporting by combining or replacing survey responses with administrative information. Reducing survey error substantially affects key measures of well-being: We estimate median household income is 6.3 percent higher than in survey estimates, and poverty is 1.1 percentage points lower. These changes are driven by subpopulations for which survey error is particularly relevant. For house holders aged 65 and over, median household income is 27.3 percent higher and poverty is 3.3 percentage points lower than in survey estimates. We do not find a significant impact on median household income for householders under 65 or on child poverty. Finally, we discuss plans for future releases: addressing other potential sources of bias, releasing additional years of statistics, extending the income concepts measured, and including smaller geographies such as state and county.
View Full
Paper PDF
-
Who are the people in my neighborhood? The 'contextual fallacy' of measuring individual context with census geographies
February 2018
Working Paper Number:
CES-18-11
Scholars deploy census-based measures of neighborhood context throughout the social sciences and epidemiology. Decades of research confirm that variation in how individuals are aggregated into geographic units to create variables that control for social, economic or political contexts can dramatically alter analyses. While most researchers are aware of the problem, they have lacked the tools to determine its magnitude in the literature and in their own projects. By using confidential access to the complete 2010 U.S. Decennial Census, we are able to construct'for all persons in the US'individual-specific contexts, which we group according to the Census-assigned block, block group, and tract. We compare these individual-specific measures to the published statistics at each scale, and we then determine the magnitude of variation in context for an individual with respect to the published measures using a simple statistic, the standard deviation of individual context (SDIC). For three key measures (percent Black, percent Hispanic, and Entropy'a measure of ethno-racial diversity), we find that block-level Census statistics frequently do not capture the actual context of individuals within them. More problematic, we uncover systematic spatial patterns in the contextual variables at all three scales. Finally, we show that within-unit variation is greater in some parts of the country than in others. We publish county-level estimates of the SDIC statistics that enable scholars to assess whether mis-specification in context variables is likely to alter analytic findings when measured at any of the three common Census units.
View Full
Paper PDF
-
Where to Build Affordable Housing?
Evaluating the Tradeoffs of Location
December 2023
Working Paper Number:
CES-23-62R
How does the location of affordable housing affect tenant welfare, the distribution of assistance, and broader societal objectives such as racial integration? Using administrative data on tenants of units funded by the Low-Income Housing Tax Credit (LIHTC), we first show that characteristics such as race and proxies for need vary widely across neighborhoods. Despite fixed eligibility requirements, LIHTC developments in more opportunity-rich neighborhoods house tenants who are higher income, more educated, and far less likely to be Black. To quantify the welfare implications, we build a residential choice model in which households choose from both market-rate and affordable housing options, where the latter must be rationed. While building affordable housing in higher-opportunity neighborhoods costs more, it also increases household welfare and reduces city-wide segregation. The gains in household welfare, however, accrue to more moderate-need, non-Black/Hispanic households at the expense of other households. This change in the distribution of assistance is primarily due to a 'crowding out' effect: households that only apply for assistance in higher-opportunity neighborhoods crowd out those willing to apply regardless of location. Finally, other policy levers'such as lowering the income limits used for means-testing'have only limited effects relative to the choice of location.
View Full
Paper PDF