-
The Rising Returns to R&D: Ideas Are Not Getting Harder to Find
May 2025
Working Paper Number:
CES-25-29
R&D investment has grown robustly, yet aggregate productivity growth has stagnated. Is this because 'ideas are getting harder to find'? This paper uses micro-data from the US Census Bureau to explore the relationship between R&D and productivity in the manufacturing sector from 1976 to 2018. We find that both the elasticity of output (TFP) with respect to R&D and the marginal returns to R&D have risen sharply. Exploring factors affecting returns, we conclude that R&D obsolescence rates must have risen. Using a novel estimation approach, we find consistent evidence of sharply rising technological rivalry. These findings suggest that R&D has become more effective at finding productivity-enhancing ideas but these ideas may also render rivals' technologies obsolete, making innovations more transient.
View Full
Paper PDF
-
U.S. Banks' Artificial Intelligence and Small Business Lending: Evidence from the Census Bureau's Annual Business Survey
February 2025
Working Paper Number:
CES-25-07
Utilizing confidential microdata from the Census Bureau's new technology survey (technology module of the Annual Business Survey), we shed light on U.S. banks' use of artificial intelligence (AI) and its effect on their small business lending. We find that the percentage of banks using AI increases from 14% in 2017 to 43% in 2019. Linking banks' AI use to their small business lending, we find that banks with greater AI usage lend significantly more to distant borrowers, about whom they have less soft information. Using an instrumental variable based on banks' proximity to AI vendors, we show that AI's effect is likely causal. In contrast, we do not find similar effects for cloud systems, other types of software, or hardware surveyed by Census, highlighting AI's uniqueness. Moreover, AI's effect on distant lending is more pronounced in poorer areas and areas with less bank presence. Last, we find that banks with greater AI usage experience lower default rates among distant borrowers and charge these borrowers lower interest rates, suggesting that AI helps banks identify creditworthy borrowers at loan origination. Overall, our evidence suggests that AI helps banks reduce information asymmetry with borrowers, thereby enabling them to extend credit over greater distances.
View Full
Paper PDF
-
The Effect of Oil News Shocks on Job Creation and Destruction
January 2025
Working Paper Number:
CES-25-06
Using data from the Annual Survey of Manufactures (ASM) and the Census of Manufacturing (CMF), we construct quarterly measures of job creation and destruction by 3-digit NAICS industries spanning from 1980Q3-2016Q4. These long series allow us to address three questions regarding the effect of oil news shocks. What is the average effect of oil news shocks on sectoral labor reallocation? What characteristics explain the observed heterogeneity in the average responses across industries? Has the response of US manufacturing changed over time? We find evidence that oil news shocks exert only a moderate effect on total manufacturing net employment growth but lead to a significant increase in job reallocation. However, we find a high degree of heterogeneity in responses across industries. We then show that the cross-industry variation in the sensitivity of net employment growth and excess job reallocation to oil news shocks is related to differences in energy costs, the rate of energy to capital expenditures, and the share of mature firms in the industry. Finally, we illustrate how the dynamic response of sectoral job creation and destruction to oil news shocks has declined since the mid-2000s.
View Full
Paper PDF
-
Entry Costs Rise with Growth
October 2024
Working Paper Number:
CES-24-63
Over time and across states in the U.S., the number of firms is more closely tied to overall employment than to output per worker. In many models of firm dynamics, trade, and growth with a free entry condition, these facts imply that the costs of creating a new firm increase sharply with productivity growth. This increase in entry costs can stem from the rising cost of labor used in entry and weak or negative knowledge spillovers from prior entry. Our findings suggest that productivity-enhancing policies will not induce firm entry, thereby limiting the total impact of such policies on welfare.
View Full
Paper PDF
-
Empirical Distribution of the Plant-Level Components of Energy and Carbon Intensity at the Six-digit NAICS Level Using a Modified KAYA Identity
September 2024
Working Paper Number:
CES-24-46
Three basic pillars of industry-level decarbonization are energy efficiency, decarbonization of energy sources, and electrification. This paper provides estimates of a decomposition of these three components of carbon emissions by industry: energy intensity, carbon intensity of energy, and energy (fuel) mix. These estimates are constructed at the six-digit NAICS level from non-public, plant-level data collected by the Census Bureau. Four quintiles of the distribution of each of the three components are constructed, using multiple imputation (MI) to deal with non-reported energy variables in the Census data. MI allows the estimates to avoid non-reporting bias. MI also allows more six-digit NAICS to be estimated under Census non-disclosure rules, since dropping non-reported observations may have reduced the sample sizes unnecessarily. The estimates show wide variation in each of these three components of emissions (intensity) and provide a first empirical look into the plant-level variation that underlies carbon emissions.
View Full
Paper PDF
-
Foreign Direct Investment, Geography, and Welfare
September 2024
Working Paper Number:
CES-24-45
We study the impact of FDI on domestic welfare using a model of internal trade with variable markups that incorporates intranational transport costs. The model allows us to disentangle the various channels through which FDI affects welfare. We apply the model to the case of Ethiopian manufacturing, which received considerable amounts of FDI during our study period. We find substantial gains from the presence of foreign firms, both in the local market and in other connected markets in the country. FDI, however, resulted in a modest worsening of allocative efficiency because foreign firms tend to have significantly higher markups than domestic firms. We report consistent findings from our empirical analysis, which utilises microdata on manufacturing firms, information on FDI projects, and geospatial data on improvements in the road network.
View Full
Paper PDF
-
Expanding the Frontier of Economic Statistics Using Big Data: A Case Study of Regional Employment
July 2024
Working Paper Number:
CES-24-37
Big data offers potentially enormous benefits for improving economic measurement, but it also presents challenges (e.g., lack of representativeness and instability), implying that their value is not always clear. We propose a framework for quantifying the usefulness of these data sources for specific applications, relative to existing official sources. We specifically weigh the potential benefits of additional granularity and timeliness, while examining the accuracy associated with any new or improved estimates, relative to comparable accuracy produced in existing official statistics. We apply the methodology to employment estimates using data from a payroll processor, considering both the improvement of existing state-level estimates, but also the production of new, more timely, county-level estimates. We find that incorporating payroll data can improve existing state-level estimates by 11% based on out-of-sample mean absolute error, although the improvement is considerably higher for smaller state-industry cells. We also produce new county-level estimates that could provide more timely granular estimates than previously available. We develop a novel test to determine if these new county-level estimates have errors consistent with official series. Given the level of granularity, we cannot reject the hypothesis that the new county estimates have an accuracy in line with official measures, implying an expansion of the existing frontier. We demonstrate the practical importance of these experimental estimates by investigating a hypothetical application during the COVID-19 pandemic, a period in which more timely and granular information could have assisted in implementing effective policies. Relative to existing estimates, we find that the alternative payroll data series could help identify areas of the country where employment was lagging. Moreover, we also demonstrate the value of a more timely series.
View Full
Paper PDF
-
Mobility, Opportunity, and Volatility Statistics (MOVS):
Infrastructure Files and Public Use Data
April 2024
Working Paper Number:
CES-24-23
Federal statistical agencies and policymakers have identified a need for integrated systems of household and personal income statistics. This interest marks a recognition that aggregated measures of income, such as GDP or average income growth, tell an incomplete story that may conceal large gaps in well-being between different types of individuals and families. Until recently, longitudinal income data that are rich enough to calculate detailed income statistics and include demographic characteristics, such as race and ethnicity, have not been available. The Mobility, Opportunity, and Volatility Statistics project (MOVS) fills this gap in comprehensive income statistics. Using linked demographic and tax records on the population of U.S. working-age adults, the MOVS project defines households and calculates household income, applying an equivalence scale to create a personal income concept, and then traces the progress of individuals' incomes over time. We then output a set of intermediate statistics by race-ethnicity group, sex, year, base-year state of residence, and base-year income decile. We select the intermediate statistics most useful in developing more complex intragenerational income mobility measures, such as transition matrices, income growth curves, and variance-based volatility statistics. We provide these intermediate statistics as part of a publicly released data tool with downloadable flat files and accompanying documentation. This paper describes the data build process and the output files, including a brief analysis highlighting the structure and content of our main statistics.
View Full
Paper PDF
-
Tracking Firm Use of AI in Real Time: A Snapshot from the Business Trends and Outlook Survey
March 2024
Working Paper Number:
CES-24-16R
Timely and accurate measurement of AI use by firms is both challenging and crucial for understanding the impacts of AI on the U.S. economy. We provide new, real-time estimates of current and expected future use of AI for business purposes based on the Business Trends and Outlook Survey for September 2023 to February 2024. During this period, bi-weekly estimates of AI use rate rose from 3.7% to 5.4%, with an expected rate of about 6.6% by early Fall 2024. The fraction of workers at businesses that use AI is higher, especially for large businesses and in the Information sector. AI use is higher in large firms but the relationship between AI use and firm size is non-monotonic. In contrast, AI use is higher in young firms. Common uses of AI include marketing automation, virtual agents, and data/text analytics. AI users often utilize AI to substitute for worker tasks and equipment/software, but few report reductions in employment due to AI use. Many firms undergo organizational changes to accommodate AI, particularly by training staff, developing new workflows, and purchasing cloud services/storage. AI users also exhibit better overall performance and higher incidence of employment expansion compared to other businesses. The most common reason for non-adoption is the inapplicability of AI to the business.
View Full
Paper PDF
-
Local and National Concentration Trends in Jobs and Sales: The Role of Structural Transformation
November 2023
Working Paper Number:
CES-23-59
National U.S. industrial concentration rose between 1992-2017. Simultaneously, the Herfindhahl Index of local (six-digit-NAICS by county) employment concentration fell. This divergence between national and local employment concentration is due to structural transformation. Both sales and employment concentration rose within industry-by-county cells. But activity shifted from concentrated Manufacturing towards relatively un-concentrated Services. A stronger between-sector shift in employment relative to sales explains the fall in local employment concentration. Had sectoral employment shares remained at their 1992 levels, average local employment concentration would have risen by 9% by 2017 rather than falling by 7%.
View Full
Paper PDF