Papers Containing Keywords(s): 'renewable'
The following papers contain search terms that you selected. From the papers listed below, you can navigate to the PDF, the profile page for that working paper, or see all the working papers written by an author. You can also explore tags, keywords, and authors that occur frequently within these papers.
See Working Papers by Tag(s), Keywords(s), Author(s), or Search Text
Click here to search again
Frequently Occurring Concepts within this Search
Gale Boyd - 4
Matt Doolin - 3
Viewing papers 1 through 8 of 8
-
Working PaperThe Impact of Industrial Opt-Out from Utility Sponsored Energy Efficiency Programs
October 2023
Working Paper Number:
CES-23-52
Industry accounts for one-third of energy consumption in the US. Studies suggest that energy efficiency opportunities represent a potential energy resource for regulated utilities and have resulted in rate of return regulated demand-side management (DSM) and energy efficiency (EE) programs. However, many large customers are allowed to self-direct or opt-out. In the Carolinas (NC and SC), over half of industrial and large commercial customers have selected to opt out. Although these customers claim they invest in EE improvements when it is economic and cost-effective to do so, there is no mechanism to validate whether they actually achieved energy savings. This project examines the industrial energy efficiency between the program participants and non participants in the Carolinas by utilizing the non-public Census of Manufacturing data and the public list of firms that have chosen to opt out. We compare the relative energy efficiency between the stay-in and opt-out plants. The t-test results suggest opt-out plants are less efficient. However, the opt-out decisions are not random; large plants or plants belonging to large firms are more likely to opt out, possibly because they have more information and resources. We conduct a propensity score matching method to account for factors that could affect the opt-out decisions. We find that the opt-out plants perform at least as well or slightly better than the stay-in plants. The relative performance of the opt-out firms suggest that they may not need utility program resources to obtain similar levels of efficiency from the stay-in group.View Full Paper PDF
-
Working PaperTechnology Lock-In and Costs of Delayed Climate Policy
July 2023
Working Paper Number:
CES-23-33
This paper studies the implications of current energy prices for future energy efficiency and climate policy. Using U.S. Census microdata and quasi-experimental variation in energy prices, we first show that manufacturing plants that open when electricity prices are low consume more energy throughout their lifetime, regardless of current electricity prices. We then estimate that a persistent bias of technological change toward energy can explain the long-term effects of entry-year electricity prices on energy intensity. Overall, this 'technology lock-in' implies that increasing entry-year electricity prices by 10% would decrease a plant's energy intensity of production by 3% throughout its lifetime.View Full Paper PDF
-
Working PaperExploring New Ways to Classify Industries for Energy Analysis and Modeling
November 2022
Working Paper Number:
CES-22-49
Combustion, other emitting processes and fossil energy use outside the power sector have become urgent concerns given the United States' commitment to achieving net-zero greenhouse gas emissions by 2050. Industry is an important end user of energy and relies on fossil fuels used directly for process heating and as feedstocks for a diverse range of applications. Fuel and energy use by industry is heterogeneous, meaning even a single product group can vary broadly in its production routes and associated energy use. In the United States, the North American Industry Classification System (NAICS) serves as the standard for statistical data collection and reporting. In turn, data based on NAICS are the foundation of most United States energy modeling. Thus, the effectiveness of NAICS at representing energy use is a limiting condition for current expansive planning to improve energy efficiency and alternatives to fossil fuels in industry. Facility-level data could be used to build more detail into heterogeneous sectors and thus supplement data from Bureau of the Census and U.S Energy Information Administration reporting at NAICS code levels but are scarce. This work explores alternative classification schemes for industry based on energy use characteristics and validates an approach to estimate facility-level energy use from publicly available greenhouse gas emissions data from the U.S. Environmental Protection Agency (EPA). The approaches in this study can facilitate understanding of current, as well as possible future, energy demand. First, current approaches to the construction of industrial taxonomies are summarized along with their usefulness for industrial energy modeling. Unsupervised machine learning techniques are then used to detect clusters in data reported from the U.S. Department of Energy's Industrial Assessment Center program. Clusters of Industrial Assessment Center data show similar levels of correlation between energy use and explanatory variables as three-digit NAICS codes. Interestingly, the clusters each include a large cross section of NAICS codes, which lends additional support to the idea that NAICS may not be particularly suited for correlation between energy use and the variables studied. Fewer clusters are needed for the same level of correlation as shown in NAICS codes. Initial assessment shows a reasonable level of separation using support vector machines with higher than 80% accuracy, so machine learning approaches may be promising for further analysis. The IAC data is focused on smaller and medium-sized facilities and is biased toward higher energy users for a given facility type. Cladistics, an approach for classification developed in biology, is adapted to energy and process characteristics of industries. Cladistics applied to industrial systems seeks to understand the progression of organizations and technology as a type of evolution, wherein traits are inherited from previous systems but evolve due to the emergence of inventions and variations and a selection process driven by adaptation to pressures and favorable outcomes. A cladogram is presented for evolutionary directions in the iron and steel sector. Cladograms are a promising tool for constructing scenarios and summarizing directions of sectoral innovation. The cladogram of iron and steel is based on the drivers of energy use in the sector. Phylogenetic inference is similar to machine learning approaches as it is based on a machine-led search of the solution space, therefore avoiding some of the subjectivity of other classification systems. Our prototype approach for constructing an industry cladogram is based on process characteristics according to the innovation framework derived from Schumpeter to capture evolution in a given sector. The resulting cladogram represents a snapshot in time based on detailed study of process characteristics. This work could be an important tool for the design of scenarios for more detailed modeling. Cladograms reveal groupings of emerging or dominant processes and their implications in a way that may be helpful for policymakers and entrepreneurs, allowing them to see the larger picture, other good ideas, or competitors. Constructing a cladogram could be a good first step to analysis of many industries (e.g. nitrogenous fertilizer production, ethyl alcohol manufacturing), to understand their heterogeneity, emerging trends, and coherent groupings of related innovations. Finally, validation is performed for facility-level energy estimates from the EPA Greenhouse Gas Reporting Program. Facility-level data availability continues to be a major challenge for industrial modeling. The method outlined by (McMillan et al. 2016; McMillan and Ruth 2019) allows estimating of facility level energy use based on mandatory greenhouse gas reporting. The validation provided here is an important step for further use of this data for industrial energy modeling.View Full Paper PDF
-
Working PaperThe U.S. Manufacturing Sector's Response to Higher Electricity Prices: Evidence from State-Level Renewable Portfolio Standards
October 2022
Working Paper Number:
CES-22-47
While several papers examine the effects of renewable portfolio standards (RPS) on electricity prices, they mainly rely on state-level data and there has been little research on how RPS policies affect manufacturing activity via their effect on electricity prices. Using plant-level data for the entire U.S. manufacturing sector and all electric utilities from 1992 ' 2015, we jointly estimate the effect of RPS adoption and stringency on plant-level electricity prices and production decisions. To ensure that our results are not sensitive to possible pre-existing differences across manufacturing plants in RPS and non-RPS states, we implement coarsened exact covariate matching. Our results suggest that electricity prices for plants in RPS states averaged about 2% higher than in non-RPS states, notably lower than prior estimates based on state-level data. In response to these higher electricity prices, we estimate that plant electricity usage declined by 1.2% for all plants and 1.8% for energy-intensive plants, broadly consistent with published estimates of the elasticity of electricity demand for industrial users. We find smaller declines in output, employment, and hours worked (relative to the decline in electricity use). Finally, several key RPS policy design features that vary substantially from state-to-state produce heterogeneous effects on plant-level electricity prices.View Full Paper PDF
-
Working PaperThe Energy Efficiency Gap and Energy Price Responsiveness in Food Processing
June 2020
Working Paper Number:
CES-20-18
This paper estimates stochastic frontier energy demand functions with non-public, plant-level data from the U.S. Census Bureau to measure the energy efficiency gap and energy price elasticities in the food processing industry. The estimates are for electricity and fuel use in 4 food processing sectors, based on the disaggregation of this industry used by the National Energy Modeling System Industrial Demand Module. The estimated demand functions control for plant inputs and output, energy prices, and other observables including 6-digit NAICS industry designations. Own price elasticities range from 0.6 to -0.9 with little evidence of fuel/electricity substitution. The magnitude of the efficiency estimates is sensitive to the assumptions but consistently reveal that few plants achieve 100% efficiency. Defining a 'practical level of energy efficiency' as the 95th percentile of the efficiency distributions and averaging across all the models result in a ~20% efficiency gap. However, most of the potential reductions in energy use from closing this efficiency gap are from plants that are 'low hanging fruit'; 13% of the 20% potential reduction in the efficiency gap can be obtained by bringing the lower half of the efficiency distribution up to just the median level of observed performance. New plants do exhibit higher energy efficiency than existing plants which is statistically significant, but the difference is small for most of the industry; ranging from a low of 0.4% to a high of 5.7%.View Full Paper PDF
-
Working PaperRelative Effectiveness of Energy Efficiency Programs versus Market Based Climate Policies in the Chemical Industry
April 2018
Working Paper Number:
CES-18-16
This paper addresses the relative effectiveness of market vs program based climate policies. We compute the carbon price resulting in an equivalent reduction in energy from programs that eliminate the efficiency gap. A reduced-form stochastic frontier energy demand analysis of plant level electricity and fuel data, from energy-intensive chemical sectors, jointly estimates the distribution of energy efficiency and underlying price elasticities. The analysis controls for plant level price endogeneity and heterogeneity to obtain a decomposition of efficiency into persistent (PE) and time-varying (TVE) components. Total inefficiency is relatively small and price elasticities are relatively high. If all plants performed at the 90th percentile of their efficiency distribution, the reduction in energy is between 4% and 13%. A modest carbon price of between $9.48/ton and $14.01/ton CO2 would achieve reductions in energy use equivalent to all manufacturing plants making improvements to close the efficiency gap.View Full Paper PDF
-
Working PaperIndustrial Investments in Energy Efficiency: A Good Idea?
January 2017
Working Paper Number:
CES-17-05
Yes, from an energy-saving perspective. No, once we factor in the negative output and productivity adoption effects. These are the main conclusions we reach by conducting the first large-scale study on cogeneration technology adoption ' a prominent form of energy-saving investments ' in the U.S. manufacturing sector, using a sample that runs from 1982 to 2010 and drawing on multiple data sources from the U.S. Census Bureau and the U.S. Energy Information Administration. We first show through a series of event studies that no differential trends exist in energy consumption nor production activities between adopters and never-adopters prior to the adoption event. We then compute a distribution of realized returns to energy savings, using accounting methods and regression methods, based on our difference-in-difference estimator. We find that (1) significant heterogeneity exists in returns; (2) unlike previous studies in the residential sector, the realized and projected returns to energy savings are roughly consistent in the industrial sector, for both private and social returns; (3) however, cogeneration adoption decreases manufacturing output and productivity persistently for at least the next 7-10 years, relative to the control group. Our IV strategies also show sizable decline in TFP post adoption.View Full Paper PDF
-
Working PaperThe Effect of Power Plants on Local Housing Values and Rents: Evidence from Restricted Census Microdata
July 2008
Working Paper Number:
CES-08-19
Current trends in electricity consumption imply that hundreds of new fossil-fuel power plants will be built in the United States over the next several decades. Power plant siting has become increasingly contentious, in part because power plants are a source of numerous negative local externalities including elevated levels of air pollution, haze, noise and traffic. Policymakers attempt to take these local disamenities into account when siting facilities, but little reliable evidence is available about their quantitative importance. This paper examines neighborhoods in the United States where power plants were opened during the 1990s using household-level data from a restricted version of the U.S. decennial census. Compared to neighborhoods farther away, housing values and rents decreased by 3-5% between 1990 and 2000 in neighborhoods near sites. Estimates of household marginal willingness-to-pay to avoid power plants are reported separately for natural gas and other types of plants, large plants and small plants, base load plants and peaker plants, and upwind and downwind households.View Full Paper PDF