Papers Containing Keywords(s): 'pollution regulation'
The following papers contain search terms that you selected. From the papers listed below, you can navigate to the PDF, the profile page for that working paper, or see all the working papers written by an author. You can also explore tags, keywords, and authors that occur frequently within these papers.
See Working Papers by Tag(s), Keywords(s), Author(s), or Search Text
Click here to search again
Frequently Occurring Concepts within this Search
Viewing papers 1 through 7 of 7
-
Working PaperIs Air Pollution Regulation Too Lenient? Evidence from US Offset Markets
June 2023
Working Paper Number:
CES-23-27R
This paper describes a framework to estimate the marginal cost of air pollution regulation, then applies it to assess whether a large set of existing U.S. air pollution regulations have marginal benefits exceeding their marginal costs. The approach utilizes an important yet under-explored provision of the Clean Air Act requiring new or expanding plants to pay incumbents in the same or neighboring counties to reduce their pollution emissions. These "offset" regulations create several hundred decentralized, local markets for pollution that differ by pollutant and location. Economic theory and empirical tests suggest these market prices reveal information about the marginal cost of abatement for new or expanding firms. We compare estimates of the marginal benefit of abatement from leading air quality models to offset prices. We find that, for most regions and pollutants, the marginal benefits of pollution abatement exceed mean offset prices more than ten-fold. In at least one market, however, estimated marginal benefits are below offset prices.View Full Paper PDF
-
Working PaperConsequences of the Clean Water Act and the Demand for Water Quality
January 2017
Working Paper Number:
CES-17-07
Since the 1972 U.S. Clean Water Act, government and industry have invested over $1 trillion to abate water pollution, or $100 per person-year. Over half of U.S. stream and river miles, however, still violate pollution standards. We use the most comprehensive set of files ever compiled on water pollution and its determinants, including 50 million pollution readings from 170,000 monitoring sites, to study water pollution's trends, causes, and welfare consequences. We have three main findings. First, water pollution concentrations have fallen substantially since 1972, though were declining at faster rates before then. Second, the Clean Water Act's grants to municipal wastewater treatment plants caused some of these declines. Third, the grants' estimated effects on housing values are generally smaller than the grants' costs.View Full Paper PDF
-
Working PaperDo EPA Regulations Affect Labor Demand? Evidence From the Pulp and Paper Industry
August 2013
Working Paper Number:
CES-13-39
The popular belief is that environmental regulation must reduce employment, since suchregulations are expected to increase production costs, which would raise prices and thus reducedemand for output, at least in a competitive market. Although this effect might seem obvious, a careful microeconomic analysis shows that it is not guaranteed. Even if environmental regulation reduces output in the regulated industry, abating pollution could require additional labor (e.g. to monitor the abatement capital and meet EPA reporting requirements). It is also possible for pollution abatement technologies to be labor enhancing. In this paper we analyze how a particular EPA regulation, the so-called 'Cluster Rule' (CR) imposed on the pulp and paper industry in 2001, affected employment in that sector. Using establishment level data from the Census of Manufacturers and Annual Survey of Manufacturers at the U.S. Census Bureau from 1992-2007 we find evidence of small employment declines (on the order of 3%-7%), which are sometimes statistically significant, at a subset of the plants covered by the CR.View Full Paper PDF
-
Working PaperAssessing Multi-Dimensional Performance: Environmental and Economic Outcomes
May 2005
Working Paper Number:
CES-05-03
This study examines the determinants of environmental and economic performance for plants in three traditional smoke-stack industries: pulp and paper, oil, and steel. We combine data from Census Bureau and EPA databases and Compustat on the economic performance, regulatory activity and environmental performance on air and water pollution emissions and toxic releases. We find that plants with higher labor productivity tend to have lower emissions. Regulatory enforcement actions (but not inspections) are associated with lower emissions, and state-level political support for environmental issues is associated with lower water pollution and toxic releases. There is little evidence that plants owned by larger firms perform better, nor do older plants perform worse.View Full Paper PDF
-
Working PaperWhat Determines Environmental Performance at Paper Mills? The Roles of Abatement Spending, Regulation, and Efficiency
April 2003
Working Paper Number:
CES-03-10
This paper examines the determinants of environmental performance at paper mills, measured by air pollution emissions per unit of output. We consider differences across plants in air pollution abatement expenditures, local regulatory stringency, and productive efficiency. Emissions are significantly lower in plants with a larger air pollution abatement capital stock: a 10 percent increase in abatement capital stock appears to reduce emissions by 6.9 percent. This translates into a sizable social return: one dollar of abatement capital stock is estimated to provide and annual return of about 75 cents in pollution reduction benefits. Local regulatory stringency and productive efficiency also matter: plants in non-attainment counties have 43 percent lower emissions and plants with 10 percent higher productivity have 2.5 percent lower emissions. For pollution abatement operating costs we find (puzzlingly) positive, but always insignificant, coefficients.View Full Paper PDF
-
Working PaperManufacturing Plant Location: Does State Pollution Regulation Matter?
July 1997
Working Paper Number:
CES-97-08
This paper tests whether differences across states in pollution regulation affect the location of manufacturing activity in the U.S. Plant-level data from the Census Bureau's Longitudinal Research Database is used to identify new plant births in each state over the 1963-1987 period. This is combined with several measures of state regulatory intensity, including business pollution abatement spending, regulatory enforcement activity, congressional pro-environment voting, and an index of state environmental laws. A significant connection is found: states with more stringent environmental regulation have fewer new manufacturing plants. These results persist across a variety of econometric specifications, and the strongest regulatory coefficients are similar in magnitude to thos4e on other factors expected to influence location, such as unionization rates. However, a subsample of high-pollution industries, which might have been expected to show much larger impacts, gets similar coefficients. This raises the possibility that differences between states other than environmental regulation might be influencing the results.View Full Paper PDF
-
Working PaperEnvironmental Regulation And Manufacturing Productivity At The Plant Level
March 1993
Working Paper Number:
CES-93-06
This paper presents results for an analysis of plant-level data from three manufacturing industries (paper, oil, and steel). We combine productivity data from the Longitudinal Research Database ( LRD ) with pollution abatement expenditures from the Census Bureau's Pollution Abatement Cost and Expenditures (PACE) survey, as well as regulatory measures taken from datasets maintained by the Environmental Protection Agency. We use data from 1979 to 1985, considering both labor and total factor productivity, both levels and growth rates, and both annual measures and averages over the period. We find a strong connection between regulation and productivity when regulation is measured by compliance costs. More regulated plants have significantly lower productivity levels and slower productivity growth rates than less regulated plants. The magnitude of the impacts are larger than expected: a $1 increase in compliance costs appears to reduce TFP by the equivalent of $3 to $4. Thus, commonly used methods of calculating the impact of regulation on productivity are substantially underestimated. These results are generally consistent across industries and for different estimation methods. Our other measures of regulation (compliance status, enforcement activity, and emissions) show much less consistent results. Higher enforcement, lower compliance, and higher emissions are generally associated with lower productivity levels and slower productivity growth, but the coefficients are rarely significant.View Full Paper PDF