This paper provides the first estimates of within-industry heterogeneity in energy and CO2 productivity for the entire U.S. manufacturing sector. We measure energy and CO2 productivity as output per dollar energy input or per ton CO2 emitted. Three findings emerge. First, within narrowly defined industries, heterogeneity in energy and CO2 productivity across plants is enormous. Second, heterogeneity in energy and CO2 productivity exceeds heterogeneity in most other productivity measures, like labor or total factor productivity. Third, heterogeneity in energy and CO2 productivity has important implications for environmental policies targeting industries rather than plants, including technology standards and carbon border adjustments.
-
Energy Prices, Pass-Through, and Incidence in U.S. Manufacturing*
January 2016
Working Paper Number:
CES-16-27
This paper studies how increases in energy input costs for production are split between consumers and producers via changes in product prices (i.e., pass-through). We show that in markets characterized by imperfect competition, marginal cost pass-through, a demand elasticity, and a price-cost markup are suffcient to characterize the relative change in welfare between producers and consumers due to a change in input costs. We and that increases in energy prices lead to higher plant-level marginal costs and output prices but lower markups. This suggests that marginal cost pass-through is incomplete, with estimates centered around 0.7. Our confidence intervals reject both zero pass-through and complete pass-through. We and heterogeneous incidence of changes in input prices across industries, with consumers bearing a smaller share of the burden than standards methods suggest.
View Full
Paper PDF
-
Is Air Pollution Regulation Too Lenient? Evidence from US Offset Markets
June 2023
Working Paper Number:
CES-23-27R
This paper describes a framework to estimate the marginal cost of air pollution regulation, then applies it to assess whether a large set of existing U.S. air pollution regulations have marginal benefits exceeding their marginal costs. The approach utilizes an important yet under-explored provision of the Clean Air Act requiring new or expanding plants to pay incumbents in the same or neighboring counties to reduce their pollution emissions. These "offset" regulations create several hundred decentralized, local markets for pollution that differ by pollutant and location. Economic theory and empirical tests suggest these market prices reveal information about the marginal cost of abatement for new or expanding firms. We compare estimates of the marginal benefit of abatement from leading air quality models to offset prices. We find that, for most regions and pollutants, the marginal benefits of pollution abatement exceed mean offset prices more than ten-fold. In at least one market, however, estimated marginal benefits are below offset prices.
View Full
Paper PDF
-
Empirical Distribution of the Plant-Level Components of Energy and Carbon Intensity at the Six-digit NAICS Level Using a Modified KAYA Identity
September 2024
Working Paper Number:
CES-24-46
Three basic pillars of industry-level decarbonization are energy efficiency, decarbonization of energy sources, and electrification. This paper provides estimates of a decomposition of these three components of carbon emissions by industry: energy intensity, carbon intensity of energy, and energy (fuel) mix. These estimates are constructed at the six-digit NAICS level from non-public, plant-level data collected by the Census Bureau. Four quintiles of the distribution of each of the three components are constructed, using multiple imputation (MI) to deal with non-reported energy variables in the Census data. MI allows the estimates to avoid non-reporting bias. MI also allows more six-digit NAICS to be estimated under Census non-disclosure rules, since dropping non-reported observations may have reduced the sample sizes unnecessarily. The estimates show wide variation in each of these three components of emissions (intensity) and provide a first empirical look into the plant-level variation that underlies carbon emissions.
View Full
Paper PDF
-
Why is Pollution from U.S. Manufacturing Declining?
The Roles of Environmental Regulation, Productivity, and Trade
January 2015
Working Paper Number:
CES-15-03R
Between 1990 and 2008, air pollution emissions from U.S. manufacturing fell by 60 percent despite a substantial increase in manufacturing output. We show that these emissions reductions are primarily driven by within-product changes in emissions intensity rather than changes in output or in the composition of products produced. We then develop and estimate a quantitative model linking trade with the environment to better understand the economic forces driving these changes. Our estimates suggest that the implicit pollution tax that manufacturers face doubled between 1990 and 2008. These changes in environmental regulation, rather than changes in productivity and trade, account for most of the emissions reductions.
View Full
Paper PDF
-
Plant-Level Productivity and Imputation of Missing Data in the Census of Manufactures
January 2011
Working Paper Number:
CES-11-02
In the U.S. Census of Manufactures, the Census Bureau imputes missing values using a combination of mean imputation, ratio imputation, and conditional mean imputation. It is wellknown that imputations based on these methods can result in underestimation of variability and potential bias in multivariate inferences. We show that this appears to be the case for the existing imputations in the Census of Manufactures. We then present an alternative strategy for handling the missing data based on multiple imputation. Specifically, we impute missing values via sequences of classification and regression trees, which offer a computationally straightforward and flexible approach for semi-automatic, large-scale multiple imputation. We also present an approach to evaluating these imputations based on posterior predictive checks. We use the multiple imputations, and the imputations currently employed by the Census Bureau, to estimate production function parameters and productivity dispersions. The results suggest that the two approaches provide quite different answers about productivity.
View Full
Paper PDF
-
Macro and Micro Dynamics of Productivity: From Devilish Details to Insights
January 2017
Working Paper Number:
CES-17-41R
Researchers use a variety of methods to estimate total factor productivity (TFP) at the firm level and, while these may seem broadly equivalent, how the resulting measures relate to the TFP concept in theoretical models depends on the assumptions about the environment in which firms operate. Interpreting these measures and drawing insights based upon their characteristics thus must take into account these conceptual differences. Absent data on prices and quantities, most methods yield 'revenue productivity' measures. We focus on two broad classes of revenue productivity measures in our examination of the relationship between measured and conceptual TFP (TFPQ). The first measure has been increasingly used as a measure of idiosyncratic distortions and to assess the degree of misallocation. The second measure is, under standard assumptions, a function of funda-
mentals (e.g., TFPQ). Using plant-level U.S. manufacturing data, we find these alternative
measures are (i) highly correlated; (ii) exhibit similar dispersion; and (iii) have similar relationships with growth and survival. These findings raise questions about interpreting the first measure as a measure of idiosyncratic distortions. We also explore the sensitivity of estimates of the contribution of reallocation to aggregate productivity growth to these alternative approaches. We use recently developed structural decompositions of aggregate productivity growth that depend critically on estimates of output versus revenue elasticities. We find alternative approaches all yield a significant contribution of reallocation to
productivity growth (although the quantitative contribution varies across approaches).
View Full
Paper PDF
-
Pollution Abatement Costs, Regulation And Plant-Level Productivity
December 1994
Working Paper Number:
CES-94-14
We analyze the connection between productivity, pollution abatement expenditures, and other measures of environmental regulation for plants in three industries (paper, oil, and steel). We examine data from 1979 to 1990, considering both total factor productivity levels and growth rates. Plants with higher abatement cost levels have significantly lower productivity levels. The magnitude of the impact is somewhat larger than expected: $1 greater abatement costs appears to be associated with the equivalent of $1.74 in lower productivity for paper mills, $1.35 for oil refineries, and $3.28 for steel mills. However, these results apply only to variation across plants in productivity levels. Estimates looking at productivity variation within plants over time, or estimates using productivity growth rates show a smaller (and insignificant) relationship between abatement costs and productivity. Other measures of environmental regulation faced by the plants (compliance status, enforcement activity, and emissions) are not significantly related to productivity.
View Full
Paper PDF
-
Industrial Investments in Energy Efficiency: A Good Idea?
January 2017
Working Paper Number:
CES-17-05
Yes, from an energy-saving perspective. No, once we factor in the negative output and productivity adoption effects. These are the main conclusions we reach by conducting the first large-scale study on cogeneration technology adoption ' a prominent form of energy-saving investments ' in the U.S. manufacturing sector, using a sample that runs from 1982 to 2010 and drawing on multiple data sources from the U.S. Census Bureau and the U.S. Energy Information Administration. We first show through a series of event studies that no differential trends exist in energy consumption nor production activities between adopters and never-adopters prior to the adoption event. We then compute a distribution of realized returns to energy savings, using accounting methods and regression methods, based on our difference-in-difference estimator. We find that (1) significant heterogeneity exists in returns; (2) unlike previous studies in the residential sector, the realized and projected returns to energy savings are roughly consistent in the industrial sector, for both private and social returns; (3) however, cogeneration adoption decreases manufacturing output and productivity persistently for at least the next 7-10 years, relative to the control group. Our IV strategies also show sizable decline in TFP post adoption.
View Full
Paper PDF
-
Price Dispersion in U.S. Manufacturing
October 1989
Working Paper Number:
CES-89-07
This paper addresses the question of whether products in the U.S. Manufacturing sector sell at a single (common) price, or whether prices vary across producers. The question of price dispersion is important for two reasons. First, if prices vary across producers, the standard method of using industry price deflators leads to errors in measuring real output at the firm or establishment level. These errors in turn lead to biased estimates of the production function and productivity growth equation as shown in Abbott (1988). Second, if prices vary across producers, it suggests that producers do not take prices as given but use price as a competitive variable. This has several implications for how economists model competitive behavior.
View Full
Paper PDF
-
Environmental Regulation And Manufacturing Productivity At The Plant Level
March 1993
Working Paper Number:
CES-93-06
This paper presents results for an analysis of plant-level data from three manufacturing industries (paper, oil, and steel). We combine productivity data from the Longitudinal Research Database ( LRD ) with pollution abatement expenditures from the Census Bureau's Pollution Abatement Cost and Expenditures (PACE) survey, as well as regulatory measures taken from datasets maintained by the Environmental Protection Agency. We use data from 1979 to 1985, considering both labor and total factor productivity, both levels and growth rates, and both annual measures and averages over the period. We find a strong connection between regulation and productivity when regulation is measured by compliance costs. More regulated plants have significantly lower productivity levels and slower productivity growth rates than less regulated plants. The magnitude of the impacts are larger than expected: a $1 increase in compliance costs appears to reduce TFP by the equivalent of $3 to $4. Thus, commonly used methods of calculating the impact of regulation on productivity are substantially underestimated. These results are generally consistent across industries and for different estimation methods. Our other measures of regulation (compliance status, enforcement activity, and emissions) show much less consistent results. Higher enforcement, lower compliance, and higher emissions are generally associated with lower productivity levels and slower productivity growth, but the coefficients are rarely significant.
View Full
Paper PDF