CREAT: Census Research Exploration and Analysis Tool

Papers written by Author(s): 'Wayne B Gray'

The following papers contain search terms that you selected. From the papers listed below, you can navigate to the PDF, the profile page for that working paper, or see all the working papers written by an author. You can also explore tags, keywords, and authors that occur frequently within these papers.
Click here to search again

Frequently Occurring Concepts within this Search

Viewing papers 1 through 10 of 12


  • Working Paper

    The U.S. Manufacturing Sector's Response to Higher Electricity Prices: Evidence from State-Level Renewable Portfolio Standards

    October 2022

    Working Paper Number:

    CES-22-47

    While several papers examine the effects of renewable portfolio standards (RPS) on electricity prices, they mainly rely on state-level data and there has been little research on how RPS policies affect manufacturing activity via their effect on electricity prices. Using plant-level data for the entire U.S. manufacturing sector and all electric utilities from 1992 ' 2015, we jointly estimate the effect of RPS adoption and stringency on plant-level electricity prices and production decisions. To ensure that our results are not sensitive to possible pre-existing differences across manufacturing plants in RPS and non-RPS states, we implement coarsened exact covariate matching. Our results suggest that electricity prices for plants in RPS states averaged about 2% higher than in non-RPS states, notably lower than prior estimates based on state-level data. In response to these higher electricity prices, we estimate that plant electricity usage declined by 1.2% for all plants and 1.8% for energy-intensive plants, broadly consistent with published estimates of the elasticity of electricity demand for industrial users. We find smaller declines in output, employment, and hours worked (relative to the decline in electricity use). Finally, several key RPS policy design features that vary substantially from state-to-state produce heterogeneous effects on plant-level electricity prices.
    View Full Paper PDF
  • Working Paper

    How Does State-Level Carbon Pricing in the United States Affect Industrial Competitiveness?

    June 2020

    Working Paper Number:

    CES-20-21

    Pricing carbon emissions from an individual jurisdiction may harm the competitiveness of local firms, causing the leakage of emissions and economic activity to other regions. Past research concentrates on national carbon prices, but the impacts of subnational carbon prices could be more severe due to the openness of regional economies. We specify a flexible model to capture competition between a plant in a state with electric sector carbon pricing and plants in other states or countries without such pricing. Treating energy prices as a proxy for carbon prices, we estimate model parameters using confidential plant-level Census data, 1982'2011. We simulate the effects on manufacturing output and employment of carbon prices covering the Regional Greenhouse Gas Initiative (RGGI) in the Northeast and Mid-Atlantic regions. A carbon price of $10 per metric ton on electricity output reduces employment in the regulated region by 2.7 percent, and raises employment in nearby states by 0.8 percent, although these estimates do not account for revenue recycling in the RGGI region that could mitigate these employment changes. The effects on output are broadly similar. National employment falls just 0.1 percent, suggesting that domestic plants in other states as opposed to foreign facilities are the principal winners from state or regional carbon pricing.
    View Full Paper PDF
  • Working Paper

    Do EPA Regulations Affect Labor Demand? Evidence From the Pulp and Paper Industry

    August 2013

    Working Paper Number:

    CES-13-39

    The popular belief is that environmental regulation must reduce employment, since suchregulations are expected to increase production costs, which would raise prices and thus reducedemand for output, at least in a competitive market. Although this effect might seem obvious, a careful microeconomic analysis shows that it is not guaranteed. Even if environmental regulation reduces output in the regulated industry, abating pollution could require additional labor (e.g. to monitor the abatement capital and meet EPA reporting requirements). It is also possible for pollution abatement technologies to be labor enhancing. In this paper we analyze how a particular EPA regulation, the so-called 'Cluster Rule' (CR) imposed on the pulp and paper industry in 2001, affected employment in that sector. Using establishment level data from the Census of Manufacturers and Annual Survey of Manufacturers at the U.S. Census Bureau from 1992-2007 we find evidence of small employment declines (on the order of 3%-7%), which are sometimes statistically significant, at a subset of the plants covered by the CR.
    View Full Paper PDF
  • Working Paper

    ENVIRONMENTAL REGULATION AND INDUSTRY EMPLOYMENT: A REASSESSMENT

    July 2013

    Working Paper Number:

    CES-13-36

    This paper examines the impact of environmental regulation on industry employment, using a structural model based on data from the Census Bureau's Pollution Abatement Costs and Expenditures Survey. This model was developed in an earlier paper (Morgenstern, Pizer, and Shih (2002) - MPS). We extend MPS by examining additional industries and additional years. We find widely varying estimates across industries, including many implausibly large positive employment effects. We explore several possible explanations for these results, without reaching a satisfactory conclusion. Our results call into question the frequent use of the average impacts estimated by MPS as a basis for calculating the quantitative impacts of new environmental regulations on employment.
    View Full Paper PDF
  • Working Paper

    Assessing Multi-Dimensional Performance: Environmental and Economic Outcomes

    May 2005

    Working Paper Number:

    CES-05-03

    This study examines the determinants of environmental and economic performance for plants in three traditional smoke-stack industries: pulp and paper, oil, and steel. We combine data from Census Bureau and EPA databases and Compustat on the economic performance, regulatory activity and environmental performance on air and water pollution emissions and toxic releases. We find that plants with higher labor productivity tend to have lower emissions. Regulatory enforcement actions (but not inspections) are associated with lower emissions, and state-level political support for environmental issues is associated with lower water pollution and toxic releases. There is little evidence that plants owned by larger firms perform better, nor do older plants perform worse.
    View Full Paper PDF
  • Working Paper

    Pollution Abatement Expenditures and Plant-Level Productivity: A Production Function Approach

    August 2003

    Working Paper Number:

    CES-03-16

    In this paper, we investigate the impact of environmental regulation on productivity using a Cobb-Douglas production function framework. Estimating the effects of regulation on productivity can be done with a top-down approach using data for broad sectors of the economy, or a more disaggregated bottom-up approach. Our study follows a bottom-up approach using data from the U.S. paper, steel, and oil industries. We measure environmental regulation using plant-level information on pollution abatement expenditures, which allows us to distinguish between productive and abatement expenditures on each input. We use annual Census Bureau information (1979-1990) on output, labor, capital, and material inputs, and pollution abatement operating costs and capital expenditures for 68 pulp and paper mills, 55 oil refineries, and 27 steel mills. We find that pollution abatement inputs generally contribute little or nothing to output, especially when compared to their 'productive' equivalents. Adding an aggregate pollution abatement cost measure to a Cobb-Douglas production function, we find that a $1 increase in pollution abatement costs leads to an estimated productivity decline of $3.11, $1.80, and $5.98 in the paper, oil, and steel industries respectively. These findings imply substantial differences across industries in their sensitivity to pollution abatement costs, arguing for a bottom-up approach that can capture these differences. Further differentiating plants by their production technology, we find substantial differences in the impact of pollution abatement costs even within industries, with higher marginal costs at plants with more polluting technologies. Finally, in all three industries, plants concentrating on change-in-production-process abatement techniques have higher productivity than plants doing predominantly end-of-line abatement, but also seem to be more affected by pollution abatement operating costs. Overall, our results point to the importance using detailed, disaggregated analyses, even below the industry level, when trying to model the costs of forcing plants to reduce their emissions.
    View Full Paper PDF
  • Working Paper

    What Determines Environmental Performance at Paper Mills? The Roles of Abatement Spending, Regulation, and Efficiency

    April 2003

    Working Paper Number:

    CES-03-10

    This paper examines the determinants of environmental performance at paper mills, measured by air pollution emissions per unit of output. We consider differences across plants in air pollution abatement expenditures, local regulatory stringency, and productive efficiency. Emissions are significantly lower in plants with a larger air pollution abatement capital stock: a 10 percent increase in abatement capital stock appears to reduce emissions by 6.9 percent. This translates into a sizable social return: one dollar of abatement capital stock is estimated to provide and annual return of about 75 cents in pollution reduction benefits. Local regulatory stringency and productive efficiency also matter: plants in non-attainment counties have 43 percent lower emissions and plants with 10 percent higher productivity have 2.5 percent lower emissions. For pollution abatement operating costs we find (puzzlingly) positive, but always insignificant, coefficients.
    View Full Paper PDF
  • Working Paper

    When Do Firms Shift Production Across States to Avoid Environmental Regulation?

    December 2001

    Working Paper Number:

    CES-01-18

    This paper examines whether a firm's allocation of production across its plants responds to the environmental regulation faced by those plants, as measured by differences in stringency across states. We also test whether sensitivity to regulation differs based on differences across firms in compliance behavior and/or differences across states in industry importance and concentration. We use Census data for the paper and oil industries to measure the share of each state in each firm's production during the 1967-1992 period. We use several measures of state environmental stringency and test for interactions between regulatory stringency and three factors: the firm's overall compliance rate, a Herfindahl index of industry concentration in the state, and the industry's share in the state economy. We find significant results for the paper industry: firms allocate smaller production shares to states with stricter regulations. This impact is concentrated among firms with low compliance rates, suggesting that low compliance rates are due to high compliance costs, not low compliance benefits. The interactions between stringency and industry characteristics are less often significant, but suggest that the paper industry is more affected by regulation where it is larger or more concentrated. Our results are weaker for the oil industry, reflecting either less opportunity to shift production across states or a greater impact of environmental regulation on paper mills.
    View Full Paper PDF
  • Working Paper

    Plant Vintage, Technology, and Environmental Regulation

    September 2001

    Working Paper Number:

    CES-01-08

    Does the impact of environmental regulation differ by plant vintage and technology? We answer this question using annual Census Bureau information on 116 pulp and paper mills' vintage, technology, productivity, and pollution abatement operating costs for 1979-1990. We find a significant negative relationship between pollution abatement costs and productivity levels. This is due almost entirely to integrated mills (those incorporating a pulping process), where a one standard deviation increase in abatement costs is predicted to reduce productivity by 5.4 percent. Older plants appear to have lower productivity but are less sensitive to abatement costs, perhaps due to 'grandfathering' of regulations. Mills which undergo renovations are also less sensitive to abatement costs, although these vintage and renovation results are not generally significant. We find similar results using a log-linear version of a three input Cobb-Douglas production function in which we include our technology, vintage, and renovation variables. Sample calculations of the impact of pollution abatement on productivity show the importance of allowing for differences based on plant technology. In a model incorporating technology interactions we estimate that total pollution abatement costs reduce productivity levels by an average of 4.7 percent across all the plants. The comparable estimate without technology interactions is 3.3 percent, approximately 30% lower.
    View Full Paper PDF
  • Working Paper

    Manufacturing Plant Location: Does State Pollution Regulation Matter?

    July 1997

    Authors: Wayne B Gray

    Working Paper Number:

    CES-97-08

    This paper tests whether differences across states in pollution regulation affect the location of manufacturing activity in the U.S. Plant-level data from the Census Bureau's Longitudinal Research Database is used to identify new plant births in each state over the 1963-1987 period. This is combined with several measures of state regulatory intensity, including business pollution abatement spending, regulatory enforcement activity, congressional pro-environment voting, and an index of state environmental laws. A significant connection is found: states with more stringent environmental regulation have fewer new manufacturing plants. These results persist across a variety of econometric specifications, and the strongest regulatory coefficients are similar in magnitude to thos4e on other factors expected to influence location, such as unionization rates. However, a subsample of high-pollution industries, which might have been expected to show much larger impacts, gets similar coefficients. This raises the possibility that differences between states other than environmental regulation might be influencing the results.
    View Full Paper PDF