This paper studies the implications of current energy prices for future energy efficiency and climate policy. Using U.S. Census microdata and quasi-experimental variation in energy prices, we first show that manufacturing plants that open when electricity prices are low consume more energy throughout their lifetime, regardless of current electricity prices. We then estimate that a persistent bias of technological change toward energy can explain the long-term effects of entry-year electricity prices on energy intensity. Overall, this 'technology lock-in' implies that increasing entry-year electricity prices by 10% would decrease a plant's energy intensity of production by 3% throughout its lifetime.
-
Energy Prices, Pass-Through, and Incidence in U.S. Manufacturing*
January 2016
Working Paper Number:
CES-16-27
This paper studies how increases in energy input costs for production are split between consumers and producers via changes in product prices (i.e., pass-through). We show that in markets characterized by imperfect competition, marginal cost pass-through, a demand elasticity, and a price-cost markup are suffcient to characterize the relative change in welfare between producers and consumers due to a change in input costs. We and that increases in energy prices lead to higher plant-level marginal costs and output prices but lower markups. This suggests that marginal cost pass-through is incomplete, with estimates centered around 0.7. Our confidence intervals reject both zero pass-through and complete pass-through. We and heterogeneous incidence of changes in input prices across industries, with consumers bearing a smaller share of the burden than standards methods suggest.
View Full
Paper PDF
-
Inter Fuel Substitution And Energy Technology Heterogeneity In U.S. Manufacturing
March 1993
Working Paper Number:
CES-93-05
This paper examines the causes of heterogeneity in energy technology across a large set of manufacturing plants. This paper explores how regional and intertemporal variation in energy prices, availability, and volatility influences a plant's energy technology adoption decision. Additionally, plant characteristics, such as size and energy intensity, are shown to greatly impact the energy technology adoption decision. A model of the energy technology adoption is developed and the parameters of the model are estimated using a large, plant-level dataset from the 1985 Manufacturing Energy Consumption Survey (MECS).
View Full
Paper PDF
-
Plant Vintage, Technology, and Environmental Regulation
September 2001
Working Paper Number:
CES-01-08
Does the impact of environmental regulation differ by plant vintage and technology? We answer this question using annual Census Bureau information on 116 pulp and paper mills' vintage, technology, productivity, and pollution abatement operating costs for 1979-1990. We find a significant negative relationship between pollution abatement costs and productivity levels. This is due almost entirely to integrated mills (those incorporating a pulping process), where a one standard deviation increase in abatement costs is predicted to reduce productivity by 5.4 percent. Older plants appear to have lower productivity but are less sensitive to abatement costs, perhaps due to 'grandfathering' of regulations. Mills which undergo renovations are also less sensitive to abatement costs, although these vintage and renovation results are not generally significant. We find similar results using a log-linear version of a three input Cobb-Douglas production function in which we include our technology, vintage, and renovation variables. Sample calculations of the impact of pollution abatement on productivity show the importance of allowing for differences based on plant technology. In a model incorporating technology interactions we estimate that total pollution abatement costs reduce productivity levels by an average of 4.7 percent across all the plants. The comparable estimate without technology interactions is 3.3 percent, approximately 30% lower.
View Full
Paper PDF
-
The Effects of Environmental Regulation on the Competiveness of U.S. Manufacturing
January 2011
Working Paper Number:
CES-11-03
Whether and to what extent environmental regulations influence the competitiveness of firms remains a hotly debated issue. Using detailed production data from tens of thousands of U.S. manufacturing plants drawn from Annual Survey of Manufactures, we estimate the effects of environmental regulations'captured by the Clean Air Act Amendments' division of counties into pollutant-specific nonattainment and attainment categories'on manufacturing plants' total factor productivity (TFP) levels. We find that among surviving polluting plants, a nonattainment designation is associated with a roughly 2.6 percent decline in TFP. The regulations governing ozone have particularly discernable effects on productivity, though effects are also seen among particulates and sulfur dioxide emitters. Carbon monoxide nonattainment, on the other hand, appears to increase measured TFP, though this appears to be concentrated among refineries. When we apply corrections for two likely sources of positive bias in these estimates (price mismeasurement and sample selection on survival), we estimate that the total TFP loss for polluting plants in nonattaining counties is 4.8 percent. This corresponds to an annual lost output in the manufacturing sector of roughly $14.7 billion in 1987 dollars ($24.4 billion in 2009 dollars). These costs have important implications for both the intensity and location of firm expansions.
View Full
Paper PDF
-
Relative Effectiveness of Energy Efficiency Programs versus Market Based Climate Policies in the Chemical Industry
April 2018
Working Paper Number:
CES-18-16
This paper addresses the relative effectiveness of market vs program based climate policies. We compute the carbon price resulting in an equivalent reduction in energy from programs that eliminate the efficiency gap. A reduced-form stochastic frontier energy demand analysis of plant level electricity and fuel data, from energy-intensive chemical sectors, jointly estimates the distribution of energy efficiency and underlying price elasticities. The analysis controls for plant level price endogeneity and heterogeneity to obtain a decomposition of efficiency into persistent (PE) and time-varying (TVE) components. Total inefficiency is relatively small and price elasticities are relatively high. If all plants performed at the 90th percentile of their efficiency distribution, the reduction in energy is between 4% and 13%. A modest carbon price of between $9.48/ton and $14.01/ton CO2 would achieve reductions in energy use equivalent to all manufacturing plants making improvements to close the efficiency gap.
View Full
Paper PDF
-
The U.S. Manufacturing Sector's Response to Higher Electricity Prices: Evidence from State-Level Renewable Portfolio Standards
October 2022
Working Paper Number:
CES-22-47
While several papers examine the effects of renewable portfolio standards (RPS) on electricity prices, they mainly rely on state-level data and there has been little research on how RPS policies affect manufacturing activity via their effect on electricity prices. Using plant-level data for the entire U.S. manufacturing sector and all electric utilities from 1992 ' 2015, we jointly estimate the effect of RPS adoption and stringency on plant-level electricity prices and production decisions. To ensure that our results are not sensitive to possible pre-existing differences across manufacturing plants in RPS and non-RPS states, we implement coarsened exact covariate matching. Our results suggest that electricity prices for plants in RPS states averaged about 2% higher than in non-RPS states, notably lower than prior estimates based on state-level data. In response to these higher electricity prices, we estimate that plant electricity usage declined by 1.2% for all plants and 1.8% for energy-intensive plants, broadly consistent with published estimates of the elasticity of electricity demand for industrial users. We find smaller declines in output, employment, and hours worked (relative to the decline in electricity use). Finally, several key RPS policy design features that vary substantially from state-to-state produce heterogeneous effects on plant-level electricity prices.
View Full
Paper PDF
-
The Impact of Vintage and Survival on Productivity: Evidence from Cohorts of U.S. Manufacturing Plants
May 2000
Working Paper Number:
CES-00-06
This paper examines the evolution of productivity in U.S. manufacturing plants from 1963 to 1992. We define a 'vintage effect' as the change in productivity of recent cohorts of new plants relative to earlier cohorts of new plants, and a 'survival effect' as the change in productivity of a particular cohort of surviving plants as it ages. The data show that both factors contribute to industry productivity growth, but play offsetting roles in determining a cohort's relative position in the productivity distribution. Recent cohorts enter with significantly higher productivity than earlier entrants did, while surviving cohorts show significant increases in productivity as they age. These two effects roughly offset each other, however, so there is a rough convergence in productivity across cohorts in 1992 and 1987. (JEL Code: D24, L6)
View Full
Paper PDF
-
How Does State-Level Carbon Pricing in the United States Affect Industrial Competitiveness?
June 2020
Working Paper Number:
CES-20-21
Pricing carbon emissions from an individual jurisdiction may harm the competitiveness of local firms, causing the leakage of emissions and economic activity to other regions. Past research concentrates on national carbon prices, but the impacts of subnational carbon prices could be more severe due to the openness of regional economies. We specify a flexible model to capture competition between a plant in a state with electric sector carbon pricing and plants in other states or countries without such pricing. Treating energy prices as a proxy for carbon prices, we estimate model parameters using confidential plant-level Census data, 1982'2011. We simulate the effects on manufacturing output and employment of carbon prices covering the Regional Greenhouse Gas Initiative (RGGI) in the Northeast and Mid-Atlantic regions. A carbon price of $10 per metric ton on electricity output reduces employment in the regulated region by 2.7 percent, and raises employment in nearby states by 0.8 percent, although these estimates do not account for revenue recycling in the RGGI region that could mitigate these employment changes. The effects on output are broadly similar. National employment falls just 0.1 percent, suggesting that domestic plants in other states as opposed to foreign facilities are the principal winners from state or regional carbon pricing.
View Full
Paper PDF
-
Pollution Abatement Costs, Regulation And Plant-Level Productivity
December 1994
Working Paper Number:
CES-94-14
We analyze the connection between productivity, pollution abatement expenditures, and other measures of environmental regulation for plants in three industries (paper, oil, and steel). We examine data from 1979 to 1990, considering both total factor productivity levels and growth rates. Plants with higher abatement cost levels have significantly lower productivity levels. The magnitude of the impact is somewhat larger than expected: $1 greater abatement costs appears to be associated with the equivalent of $1.74 in lower productivity for paper mills, $1.35 for oil refineries, and $3.28 for steel mills. However, these results apply only to variation across plants in productivity levels. Estimates looking at productivity variation within plants over time, or estimates using productivity growth rates show a smaller (and insignificant) relationship between abatement costs and productivity. Other measures of environmental regulation faced by the plants (compliance status, enforcement activity, and emissions) are not significantly related to productivity.
View Full
Paper PDF
-
Costs of Air Quality Regulation
July 1999
Working Paper Number:
CES-99-09
This paper explores some costs associated with environmental regulation. We focus on regulation pertaining to ground-level- ozone (O) and its effects on two manufacturing industries - industrial organic chemicals (SIC 2865-9) and miscellaneous plastic products (SIC 308). Both are major emitters of volatile organic compounds (VOC) and nitrogen oxides (NO), the chemical precursors to ozone. Using plant-level data from the Census Bureau's Longitudinal Research Database (LRD), we examine the effects of regulation on the timing and magnitudes of investments by firms and on the impact it has had on their operating costs. As an alternative way to assess costs, we also employ plant-level data from the Pollution Abatement Costs and Expenditures (PACE) survey. Analyses employing average total costs functions reveal that plants' production costs are indeed higher in (heavily-regulated) non-attainment areas relative to (less-regulated) attainment areas. This is particularly true for younger plants, consistent with the notion that regulation is most burdensome for new (rather existing) plants. Cost estimates using PACE data generally reveal lower costs. We also find that new heavily-regulated plants start out much larger than less-regulated plants, but then do not invest as much. Among other things, this highlights the substantial fixed costs involved in obtaining expansion permits. We also discuss reasons why plants may restrict their size.
View Full
Paper PDF