This paper reports on the relationship between the usage of advanced manufacturing technologies (AMTs) and energy consumption patterns in manufacturing plants. Using data from the Survey of Manufacturing Technology and the 1987 Census of Manufactures, we model the energy intensity and the electricity intensity of plants as functions of AMT usage and plant age. The main findings are that plants which utilize AMTs are less energy intensive than plants not using AMTs but consume proportionately more electricity as a fuel source. Additionally, older plants are generally more energy intensive and rely on fossil fuels to a greater extent than younger plants.
-
Technology Usage in U.S. Manufacturing Industries: New Evidence from the Survey of Manufacturing Technology
October 1991
Working Paper Number:
CES-91-07
Using a new dataset on technology usage in U.S. manufacturing plants, this paper describes how technology usage varies by plant and firm characteristics. The paper extends the previous literature in three important ways. First, it examines a wide range of relatively new technologies. Second, the paper uses a much larger and more representative set of firms and establishments than previous studies. Finally, the paper explores the role of firm R&D expenditures in the process of technology adoption. The main findings indicate that larger plants more readily use new technologies, plants owned by firms with high R&D-to-sales ratios adopt technologies more rapidly, and the relationship between plant age and technology usage is relatively weak.
View Full
Paper PDF
-
The Effect Of Technology Use On Productivity Growth
April 1996
Working Paper Number:
CES-96-02
This paper examines the relationship between the use of advanced technologies and productivity and productivity growth rates. We use data from the 1993 and 1988 Survey of Manufacturing Technology (SMT) to examine the use of advanced (computer based) technologies at two different points in time. We are also able to combine the survey data with the Longitudinal Research Database (LRD) to examine the relationships between plant performance, plant characteristics, and the use of advanced technologies. In addition, a subset of these plants were surveyed in both years, enabling us to directly associate changes in technology use with changes in plant productivity performance. The main findings of the study are as follows. First, diffusion is not the same across the surveyed technologies. Second, the adoption process is not smooth: plants added and dropped technologies over the six-year interval 1988-93. In fact, the average plant showed a gross change of roughly four technologies in achieving an average net increase of less than one new technology. In this regard, technology appears to be an experience good: plants experiment with particular technologies before deciding to add additional units or drop the technology entirely. We find that establishments that use advanced technologies exhibit higher productivity. This relationship is observed in both 1988 and 1993 even after accounting for other important factors associated with productivity: size, age, capital intensity, labor skill mix, and other controls for plant characteristics such as industry and region. In addition, the relationship between productivity and advanced technology use is observed both in the extent of technologies used and the intensity of their use. Finally, while there is some evidence that the use of advanced technologies is positively related to improved productivity performance, the data suggest that the dominant explanation for the observed cross-section relationship is that good performers are more likely to use advanced technologies than poorly performing operations.
View Full
Paper PDF
-
Inter Fuel Substitution And Energy Technology Heterogeneity In U.S. Manufacturing
March 1993
Working Paper Number:
CES-93-05
This paper examines the causes of heterogeneity in energy technology across a large set of manufacturing plants. This paper explores how regional and intertemporal variation in energy prices, availability, and volatility influences a plant's energy technology adoption decision. Additionally, plant characteristics, such as size and energy intensity, are shown to greatly impact the energy technology adoption decision. A model of the energy technology adoption is developed and the parameters of the model are estimated using a large, plant-level dataset from the 1985 Manufacturing Energy Consumption Survey (MECS).
View Full
Paper PDF
-
Measuring Plant Level Energy Efficiency and Technical Change in the U.S. Metal-Based Durable Manufacturing Sector Using Stochastic Frontier Analysis
January 2016
Working Paper Number:
CES-16-52
This study analyzes the electric and thermal energy efficiency for five different metal-based durable manufacturing industries in the United States from 1987-2012 at the 3 digit North American Industry Classification System (NAICS) level. Using confidential plant-level data on energy use and production from the quinquennial U.S. Economic Census, a stochastic frontier regression analysis (SFA) is applied in six repeated cross sections for each five year census. The SFA controls for energy prices and climate-driven energy demand (heating degree days - HDD - and cooling degree days - CDD) due to differences in plant level locations, as well as 6-digit NAICS industry effects. A Malmquist index is used to decompose aggregate plant technical change in energy use into indices of efficiency and frontier (best practice) change. Own energy price elasticities range from -.7 to -1.0, with electricity tending to have slightly higher elasticity than fuel. Mean efficiency estimates (100 percent equals best practice level) range from a low of 32 percent (thermal 334 - Computer and Electronic Products) to a high of 86 percent (electricity 332 - Fabricated Metal Products). Electric efficiency is consistently better than thermal efficiency for all NAICS. There is no clear pattern to the decomposition of aggregate technical Thermal change. In some years efficiency improvement dominates; in other years aggregate technical change is driven by improvement in best practice.
View Full
Paper PDF
-
The Energy Efficiency Gap and Energy Price Responsiveness in Food Processing
June 2020
Working Paper Number:
CES-20-18
This paper estimates stochastic frontier energy demand functions with non-public, plant-level data from the U.S. Census Bureau to measure the energy efficiency gap and energy price elasticities in the food processing industry. The estimates are for electricity and fuel use in 4 food processing sectors, based on the disaggregation of this industry used by the National Energy Modeling System Industrial Demand Module. The estimated demand functions control for plant inputs and output, energy prices, and other observables including 6-digit NAICS industry designations. Own price elasticities range from 0.6 to -0.9 with little evidence of fuel/electricity substitution. The magnitude of the efficiency estimates is sensitive to the assumptions but consistently reveal that few plants achieve 100% efficiency. Defining a 'practical level of energy efficiency' as the 95th percentile of the efficiency distributions and averaging across all the models result in a ~20% efficiency gap. However, most of the potential reductions in energy use from closing this efficiency gap are from plants that are 'low hanging fruit'; 13% of the 20% potential reduction in the efficiency gap can be obtained by bringing the lower half of the efficiency distribution up to just the median level of observed performance. New plants do exhibit higher energy efficiency than existing plants which is statistically significant, but the difference is small for most of the industry; ranging from a low of 0.4% to a high of 5.7%.
View Full
Paper PDF
-
An Option-Value Approach to Technology in U.S. Maufacturing: Evidence from Plant-Level Data
July 2000
Working Paper Number:
CES-00-12
Numerous empirical studies have examined the role of firm and industry heterogeneity in the decision to adopt new technologies using a Net Present Value framework. However, as suggested by the recently developed option-value theory, these studies may have overlooked the role of investment reversibility and uncertainty as important determinants of technology adoption. Using the option-value investment model as my underlying theoretical framework, I examine how these two factors affect the decision to adopt three advanced manufacturing technologies. My results support the option-value model's prediction that plants operating in industries facing higher investment reversibility and lower degrees of demand and technological uncertainty are more likely to adopt advanced manufacturing technologies.
View Full
Paper PDF
-
Technology Lock-In and Costs of Delayed Climate Policy
July 2023
Working Paper Number:
CES-23-33
This paper studies the implications of current energy prices for future energy efficiency and climate policy. Using U.S. Census microdata and quasi-experimental variation in energy prices, we first show that manufacturing plants that open when electricity prices are low consume more energy throughout their lifetime, regardless of current electricity prices. We then estimate that a persistent bias of technological change toward energy can explain the long-term effects of entry-year electricity prices on energy intensity. Overall, this 'technology lock-in' implies that increasing entry-year electricity prices by 10% would decrease a plant's energy intensity of production by 3% throughout its lifetime.
View Full
Paper PDF
-
Estimating the Distribution of Plant-Level Manufacturing Energy Efficiency with Stochastic Frontier Regression
March 2007
Working Paper Number:
CES-07-07
A feature commonly used to distinguish between parametric/statistical models and engineering models is that engineering models explicitly represent best practice technologies while the parametric/statistical models are typically based on average practice. Measures of energy intensity based on average practice are less useful in the corporate management of energy or for public policy goal setting. In the context of company or plant level energy management, it is more useful to have a measure of energy intensity capable of representing where a company or plant lies within a distribution of performance. In other words, is the performance close (or far) from the industry best practice? This paper presents a parametric/statistical approach that can be used to measure best practice, thereby providing a measure of the difference, or 'efficiency gap' at a plant, company or overall industry level. The approach requires plant level data and applies a stochastic frontier regression analysis to energy use. Stochastic frontier regression analysis separates the energy intensity into three components, systematic effects, inefficiency, and statistical (random) error. The stochastic frontier can be viewed as a sub-vector input distance function. One advantage of this approach is that physical product mix can be included in the distance function, avoiding the problem of aggregating output to define a single energy/output ratio to measure energy intensity. The paper outlines the methods and gives an example of the analysis conducted for a non-public micro-dataset of wet corn refining plants.
View Full
Paper PDF
-
Wages, Employer Size-Wage Premia and Employment Structure: Their Relationship to Advanced-Technology Usage at U.S. Manufacturing Establishments
December 1992
Working Paper Number:
CES-92-15
We study wages, size-wage premia and the employment structure (measured as the fraction of production workers in an establishment) and their relationship to the extent of advanced-technology usage at U.S, manufacturing plants. We begin by sketching a model of technology adoption based on Lucas (1978) that provides a framework for interpreting the data analysis. We then study a new Census Bureau survey of technology use at manufacturing plants. Workers in establishments that are classified as the most technology intensive earn a premium of 16 percent as compared to those in plants that are the least premium earned by workers in all but the very largest plants. The inclusion of the technology classification variables in standard wage regressions reduced the size-wage premia by as much as 60 percent for some size categories.
View Full
Paper PDF
-
The U.S. Manufacturing Sector's Response to Higher Electricity Prices: Evidence from State-Level Renewable Portfolio Standards
October 2022
Working Paper Number:
CES-22-47
While several papers examine the effects of renewable portfolio standards (RPS) on electricity prices, they mainly rely on state-level data and there has been little research on how RPS policies affect manufacturing activity via their effect on electricity prices. Using plant-level data for the entire U.S. manufacturing sector and all electric utilities from 1992 ' 2015, we jointly estimate the effect of RPS adoption and stringency on plant-level electricity prices and production decisions. To ensure that our results are not sensitive to possible pre-existing differences across manufacturing plants in RPS and non-RPS states, we implement coarsened exact covariate matching. Our results suggest that electricity prices for plants in RPS states averaged about 2% higher than in non-RPS states, notably lower than prior estimates based on state-level data. In response to these higher electricity prices, we estimate that plant electricity usage declined by 1.2% for all plants and 1.8% for energy-intensive plants, broadly consistent with published estimates of the elasticity of electricity demand for industrial users. We find smaller declines in output, employment, and hours worked (relative to the decline in electricity use). Finally, several key RPS policy design features that vary substantially from state-to-state produce heterogeneous effects on plant-level electricity prices.
View Full
Paper PDF