This study analyzes the electric and thermal energy efficiency for five different metal-based durable manufacturing industries in the United States from 1987-2012 at the 3 digit North American Industry Classification System (NAICS) level. Using confidential plant-level data on energy use and production from the quinquennial U.S. Economic Census, a stochastic frontier regression analysis (SFA) is applied in six repeated cross sections for each five year census. The SFA controls for energy prices and climate-driven energy demand (heating degree days - HDD - and cooling degree days - CDD) due to differences in plant level locations, as well as 6-digit NAICS industry effects. A Malmquist index is used to decompose aggregate plant technical change in energy use into indices of efficiency and frontier (best practice) change. Own energy price elasticities range from -.7 to -1.0, with electricity tending to have slightly higher elasticity than fuel. Mean efficiency estimates (100 percent equals best practice level) range from a low of 32 percent (thermal 334 - Computer and Electronic Products) to a high of 86 percent (electricity 332 - Fabricated Metal Products). Electric efficiency is consistently better than thermal efficiency for all NAICS. There is no clear pattern to the decomposition of aggregate technical Thermal change. In some years efficiency improvement dominates; in other years aggregate technical change is driven by improvement in best practice.
-
Relative Effectiveness of Energy Efficiency Programs versus Market Based Climate Policies in the Chemical Industry
April 2018
Working Paper Number:
CES-18-16
This paper addresses the relative effectiveness of market vs program based climate policies. We compute the carbon price resulting in an equivalent reduction in energy from programs that eliminate the efficiency gap. A reduced-form stochastic frontier energy demand analysis of plant level electricity and fuel data, from energy-intensive chemical sectors, jointly estimates the distribution of energy efficiency and underlying price elasticities. The analysis controls for plant level price endogeneity and heterogeneity to obtain a decomposition of efficiency into persistent (PE) and time-varying (TVE) components. Total inefficiency is relatively small and price elasticities are relatively high. If all plants performed at the 90th percentile of their efficiency distribution, the reduction in energy is between 4% and 13%. A modest carbon price of between $9.48/ton and $14.01/ton CO2 would achieve reductions in energy use equivalent to all manufacturing plants making improvements to close the efficiency gap.
View Full
Paper PDF
-
The Energy Efficiency Gap and Energy Price Responsiveness in Food Processing
June 2020
Working Paper Number:
CES-20-18
This paper estimates stochastic frontier energy demand functions with non-public, plant-level data from the U.S. Census Bureau to measure the energy efficiency gap and energy price elasticities in the food processing industry. The estimates are for electricity and fuel use in 4 food processing sectors, based on the disaggregation of this industry used by the National Energy Modeling System Industrial Demand Module. The estimated demand functions control for plant inputs and output, energy prices, and other observables including 6-digit NAICS industry designations. Own price elasticities range from 0.6 to -0.9 with little evidence of fuel/electricity substitution. The magnitude of the efficiency estimates is sensitive to the assumptions but consistently reveal that few plants achieve 100% efficiency. Defining a 'practical level of energy efficiency' as the 95th percentile of the efficiency distributions and averaging across all the models result in a ~20% efficiency gap. However, most of the potential reductions in energy use from closing this efficiency gap are from plants that are 'low hanging fruit'; 13% of the 20% potential reduction in the efficiency gap can be obtained by bringing the lower half of the efficiency distribution up to just the median level of observed performance. New plants do exhibit higher energy efficiency than existing plants which is statistically significant, but the difference is small for most of the industry; ranging from a low of 0.4% to a high of 5.7%.
View Full
Paper PDF
-
Estimating the Distribution of Plant-Level Manufacturing Energy Efficiency with Stochastic Frontier Regression
March 2007
Working Paper Number:
CES-07-07
A feature commonly used to distinguish between parametric/statistical models and engineering models is that engineering models explicitly represent best practice technologies while the parametric/statistical models are typically based on average practice. Measures of energy intensity based on average practice are less useful in the corporate management of energy or for public policy goal setting. In the context of company or plant level energy management, it is more useful to have a measure of energy intensity capable of representing where a company or plant lies within a distribution of performance. In other words, is the performance close (or far) from the industry best practice? This paper presents a parametric/statistical approach that can be used to measure best practice, thereby providing a measure of the difference, or 'efficiency gap' at a plant, company or overall industry level. The approach requires plant level data and applies a stochastic frontier regression analysis to energy use. Stochastic frontier regression analysis separates the energy intensity into three components, systematic effects, inefficiency, and statistical (random) error. The stochastic frontier can be viewed as a sub-vector input distance function. One advantage of this approach is that physical product mix can be included in the distance function, avoiding the problem of aggregating output to define a single energy/output ratio to measure energy intensity. The paper outlines the methods and gives an example of the analysis conducted for a non-public micro-dataset of wet corn refining plants.
View Full
Paper PDF
-
Empirical Distribution of the Plant-Level Components of Energy and Carbon Intensity at the Six-digit NAICS Level Using a Modified KAYA Identity
September 2024
Working Paper Number:
CES-24-46
Three basic pillars of industry-level decarbonization are energy efficiency, decarbonization of energy sources, and electrification. This paper provides estimates of a decomposition of these three components of carbon emissions by industry: energy intensity, carbon intensity of energy, and energy (fuel) mix. These estimates are constructed at the six-digit NAICS level from non-public, plant-level data collected by the Census Bureau. Four quintiles of the distribution of each of the three components are constructed, using multiple imputation (MI) to deal with non-reported energy variables in the Census data. MI allows the estimates to avoid non-reporting bias. MI also allows more six-digit NAICS to be estimated under Census non-disclosure rules, since dropping non-reported observations may have reduced the sample sizes unnecessarily. The estimates show wide variation in each of these three components of emissions (intensity) and provide a first empirical look into the plant-level variation that underlies carbon emissions.
View Full
Paper PDF
-
Technical Inefficiency And Productive Decline In The U.S. Interstate Natural Gas Pipeline Industry Under The Natural Gas Policy Act
October 1991
Working Paper Number:
CES-91-06
The U.S. natural gas industry has undergone substantial change since the enactment of the Natural Gas Policy Act of 1978. Although the major focus of the NGPA was to initiate partial and gradual price deregulation of natural gas at the well-head, the interstate transmission industry was profoundly affected by changes in the relative prices of competing fuels and contractual relationships among producers, transporters, distributors, and end-users. This paper assesses the impact of the NGPA on the technical efficiency and productivity of fourteen interstate natural gas transmission firms for the period 1978-1985. We focus on the distortionary effects that resulted in the industry during a period in which changes in regulatory policy could neither anticipate changing market conditions nor rapidly adjust to those changes. Two alternative estimating methodologies, stochastic frontier production analysis and data envelopment analysis, are used to measure the firm-specific and temporal distortionary effects. Concordant findings from these alternative methodologies suggest a pervasive pattern of declining technical efficiency in the industry during the period in which this major regulatory intervention was introduced and implemented. The representative firms experience an average annual decline in efficiency of .55 percent over the sample period. In addition, it appears that the industry suffered a decline in productivity during the sample period, averaging -1.18 percent annually.
View Full
Paper PDF
-
Technology Lock-In and Costs of Delayed Climate Policy
July 2023
Working Paper Number:
CES-23-33
This paper studies the implications of current energy prices for future energy efficiency and climate policy. Using U.S. Census microdata and quasi-experimental variation in energy prices, we first show that manufacturing plants that open when electricity prices are low consume more energy throughout their lifetime, regardless of current electricity prices. We then estimate that a persistent bias of technological change toward energy can explain the long-term effects of entry-year electricity prices on energy intensity. Overall, this 'technology lock-in' implies that increasing entry-year electricity prices by 10% would decrease a plant's energy intensity of production by 3% throughout its lifetime.
View Full
Paper PDF
-
Cogeneration Technology Adoption in the U.S.
January 2016
Working Paper Number:
CES-16-30
Well over half of all electricity generated in recent years in Denmark is through cogeneration. In U.S., however, this number is only roughly eight percent. While both the federal and state governments provided regulatory incentives for more cogeneration adoption, the capacity added in the past five years have been the lowest since late 1970s. My goal is to first understand what are and their relative importance of the factors that drive cogeneration technology adoption, with an emphasis on estimating the elasticity of adoption with respect to relative energy input prices and regulatory factors. Very preliminary results show that with a 1 cent increase in purchased electricity price from 6 cents (roughly current average) to 7 cents per kwh, the likelihood of cogeneration technology adoption goes up by about 0.7-1 percent. Then I will try to address the general equilibrium effect of cogeneration adoption in the electricity generation sector as a whole and potentially estimate some key parameters that the social planner would need to determine the optimal cogeneration investment amount. Partial equilibrium setting does not consider the decrease in investment in the utilities sector when facing competition from the distributed electricity generators, and therefore ignore the effects from the change in equilibrium price of electricity. The competitive market equilibrium setting does not consider the externality in the reduction of CO2 emissions, and leads to socially sub-optimal investment in cogeneration. If we were to achieve the national goal to increase cogeneration capacity half of the current capacity by 2020, the US Department of Energy (DOE) estimated an annual reduction of 150 million metric tons of CO2 annually ' equivalent to the emissions from over 25 million cars. This is about five times the annual carbon reduction from deregulation and consolidation in the US nuclear power industry (Davis, Wolfram 2012). Although the DOE estimates could be an overly optimistic estimate, it nonetheless suggests the large potential in the adoption of cogeneration technology.
View Full
Paper PDF
-
How Does State-Level Carbon Pricing in the United States Affect Industrial Competitiveness?
June 2020
Working Paper Number:
CES-20-21
Pricing carbon emissions from an individual jurisdiction may harm the competitiveness of local firms, causing the leakage of emissions and economic activity to other regions. Past research concentrates on national carbon prices, but the impacts of subnational carbon prices could be more severe due to the openness of regional economies. We specify a flexible model to capture competition between a plant in a state with electric sector carbon pricing and plants in other states or countries without such pricing. Treating energy prices as a proxy for carbon prices, we estimate model parameters using confidential plant-level Census data, 1982'2011. We simulate the effects on manufacturing output and employment of carbon prices covering the Regional Greenhouse Gas Initiative (RGGI) in the Northeast and Mid-Atlantic regions. A carbon price of $10 per metric ton on electricity output reduces employment in the regulated region by 2.7 percent, and raises employment in nearby states by 0.8 percent, although these estimates do not account for revenue recycling in the RGGI region that could mitigate these employment changes. The effects on output are broadly similar. National employment falls just 0.1 percent, suggesting that domestic plants in other states as opposed to foreign facilities are the principal winners from state or regional carbon pricing.
View Full
Paper PDF
-
Energy Intensity, Electricity Consumption, and Advanced Manufacturing Technology Usage
July 1993
Working Paper Number:
CES-93-09
This paper reports on the relationship between the usage of advanced manufacturing technologies (AMTs) and energy consumption patterns in manufacturing plants. Using data from the Survey of Manufacturing Technology and the 1987 Census of Manufactures, we model the energy intensity and the electricity intensity of plants as functions of AMT usage and plant age. The main findings are that plants which utilize AMTs are less energy intensive than plants not using AMTs but consume proportionately more electricity as a fuel source. Additionally, older plants are generally more energy intensive and rely on fossil fuels to a greater extent than younger plants.
View Full
Paper PDF
-
Inter Fuel Substitution And Energy Technology Heterogeneity In U.S. Manufacturing
March 1993
Working Paper Number:
CES-93-05
This paper examines the causes of heterogeneity in energy technology across a large set of manufacturing plants. This paper explores how regional and intertemporal variation in energy prices, availability, and volatility influences a plant's energy technology adoption decision. Additionally, plant characteristics, such as size and energy intensity, are shown to greatly impact the energy technology adoption decision. A model of the energy technology adoption is developed and the parameters of the model are estimated using a large, plant-level dataset from the 1985 Manufacturing Energy Consumption Survey (MECS).
View Full
Paper PDF