Industry accounts for one-third of energy consumption in the US. Studies suggest that energy efficiency opportunities represent a potential energy resource for regulated utilities and have resulted in rate of return regulated demand-side management (DSM) and energy efficiency (EE) programs. However, many large customers are allowed to self-direct or opt-out. In the Carolinas (NC and SC), over half of industrial and large commercial customers have selected to opt out. Although these customers claim they invest in EE improvements when it is economic and cost-effective to do so, there is no mechanism to validate whether they actually achieved energy savings. This project examines the industrial energy efficiency between the program participants and non participants in the Carolinas by utilizing the non-public Census of Manufacturing data and the public list of firms that have chosen to opt out. We compare the relative energy efficiency between the stay-in and opt-out plants. The t-test results suggest opt-out plants are less efficient. However, the opt-out decisions are not random; large plants or plants belonging to large firms are more likely to opt out, possibly because they have more information and resources. We conduct a propensity score matching method to account for factors that could affect the opt-out decisions. We find that the opt-out plants perform at least as well or slightly better than the stay-in plants. The relative performance of the opt-out firms suggest that they may not need utility program resources to obtain similar levels of efficiency from the stay-in group.
-
The Energy Efficiency Gap and Energy Price Responsiveness in Food Processing
June 2020
Working Paper Number:
CES-20-18
This paper estimates stochastic frontier energy demand functions with non-public, plant-level data from the U.S. Census Bureau to measure the energy efficiency gap and energy price elasticities in the food processing industry. The estimates are for electricity and fuel use in 4 food processing sectors, based on the disaggregation of this industry used by the National Energy Modeling System Industrial Demand Module. The estimated demand functions control for plant inputs and output, energy prices, and other observables including 6-digit NAICS industry designations. Own price elasticities range from 0.6 to -0.9 with little evidence of fuel/electricity substitution. The magnitude of the efficiency estimates is sensitive to the assumptions but consistently reveal that few plants achieve 100% efficiency. Defining a 'practical level of energy efficiency' as the 95th percentile of the efficiency distributions and averaging across all the models result in a ~20% efficiency gap. However, most of the potential reductions in energy use from closing this efficiency gap are from plants that are 'low hanging fruit'; 13% of the 20% potential reduction in the efficiency gap can be obtained by bringing the lower half of the efficiency distribution up to just the median level of observed performance. New plants do exhibit higher energy efficiency than existing plants which is statistically significant, but the difference is small for most of the industry; ranging from a low of 0.4% to a high of 5.7%.
View Full
Paper PDF
-
Relative Effectiveness of Energy Efficiency Programs versus Market Based Climate Policies in the Chemical Industry
April 2018
Working Paper Number:
CES-18-16
This paper addresses the relative effectiveness of market vs program based climate policies. We compute the carbon price resulting in an equivalent reduction in energy from programs that eliminate the efficiency gap. A reduced-form stochastic frontier energy demand analysis of plant level electricity and fuel data, from energy-intensive chemical sectors, jointly estimates the distribution of energy efficiency and underlying price elasticities. The analysis controls for plant level price endogeneity and heterogeneity to obtain a decomposition of efficiency into persistent (PE) and time-varying (TVE) components. Total inefficiency is relatively small and price elasticities are relatively high. If all plants performed at the 90th percentile of their efficiency distribution, the reduction in energy is between 4% and 13%. A modest carbon price of between $9.48/ton and $14.01/ton CO2 would achieve reductions in energy use equivalent to all manufacturing plants making improvements to close the efficiency gap.
View Full
Paper PDF
-
Estimating the Distribution of Plant-Level Manufacturing Energy Efficiency with Stochastic Frontier Regression
March 2007
Working Paper Number:
CES-07-07
A feature commonly used to distinguish between parametric/statistical models and engineering models is that engineering models explicitly represent best practice technologies while the parametric/statistical models are typically based on average practice. Measures of energy intensity based on average practice are less useful in the corporate management of energy or for public policy goal setting. In the context of company or plant level energy management, it is more useful to have a measure of energy intensity capable of representing where a company or plant lies within a distribution of performance. In other words, is the performance close (or far) from the industry best practice? This paper presents a parametric/statistical approach that can be used to measure best practice, thereby providing a measure of the difference, or 'efficiency gap' at a plant, company or overall industry level. The approach requires plant level data and applies a stochastic frontier regression analysis to energy use. Stochastic frontier regression analysis separates the energy intensity into three components, systematic effects, inefficiency, and statistical (random) error. The stochastic frontier can be viewed as a sub-vector input distance function. One advantage of this approach is that physical product mix can be included in the distance function, avoiding the problem of aggregating output to define a single energy/output ratio to measure energy intensity. The paper outlines the methods and gives an example of the analysis conducted for a non-public micro-dataset of wet corn refining plants.
View Full
Paper PDF
-
The U.S. Manufacturing Sector's Response to Higher Electricity Prices: Evidence from State-Level Renewable Portfolio Standards
October 2022
Working Paper Number:
CES-22-47
While several papers examine the effects of renewable portfolio standards (RPS) on electricity prices, they mainly rely on state-level data and there has been little research on how RPS policies affect manufacturing activity via their effect on electricity prices. Using plant-level data for the entire U.S. manufacturing sector and all electric utilities from 1992 ' 2015, we jointly estimate the effect of RPS adoption and stringency on plant-level electricity prices and production decisions. To ensure that our results are not sensitive to possible pre-existing differences across manufacturing plants in RPS and non-RPS states, we implement coarsened exact covariate matching. Our results suggest that electricity prices for plants in RPS states averaged about 2% higher than in non-RPS states, notably lower than prior estimates based on state-level data. In response to these higher electricity prices, we estimate that plant electricity usage declined by 1.2% for all plants and 1.8% for energy-intensive plants, broadly consistent with published estimates of the elasticity of electricity demand for industrial users. We find smaller declines in output, employment, and hours worked (relative to the decline in electricity use). Finally, several key RPS policy design features that vary substantially from state-to-state produce heterogeneous effects on plant-level electricity prices.
View Full
Paper PDF
-
Measuring Plant Level Energy Efficiency and Technical Change in the U.S. Metal-Based Durable Manufacturing Sector Using Stochastic Frontier Analysis
January 2016
Working Paper Number:
CES-16-52
This study analyzes the electric and thermal energy efficiency for five different metal-based durable manufacturing industries in the United States from 1987-2012 at the 3 digit North American Industry Classification System (NAICS) level. Using confidential plant-level data on energy use and production from the quinquennial U.S. Economic Census, a stochastic frontier regression analysis (SFA) is applied in six repeated cross sections for each five year census. The SFA controls for energy prices and climate-driven energy demand (heating degree days - HDD - and cooling degree days - CDD) due to differences in plant level locations, as well as 6-digit NAICS industry effects. A Malmquist index is used to decompose aggregate plant technical change in energy use into indices of efficiency and frontier (best practice) change. Own energy price elasticities range from -.7 to -1.0, with electricity tending to have slightly higher elasticity than fuel. Mean efficiency estimates (100 percent equals best practice level) range from a low of 32 percent (thermal 334 - Computer and Electronic Products) to a high of 86 percent (electricity 332 - Fabricated Metal Products). Electric efficiency is consistently better than thermal efficiency for all NAICS. There is no clear pattern to the decomposition of aggregate technical Thermal change. In some years efficiency improvement dominates; in other years aggregate technical change is driven by improvement in best practice.
View Full
Paper PDF
-
How Does State-Level Carbon Pricing in the United States Affect Industrial Competitiveness?
June 2020
Working Paper Number:
CES-20-21
Pricing carbon emissions from an individual jurisdiction may harm the competitiveness of local firms, causing the leakage of emissions and economic activity to other regions. Past research concentrates on national carbon prices, but the impacts of subnational carbon prices could be more severe due to the openness of regional economies. We specify a flexible model to capture competition between a plant in a state with electric sector carbon pricing and plants in other states or countries without such pricing. Treating energy prices as a proxy for carbon prices, we estimate model parameters using confidential plant-level Census data, 1982'2011. We simulate the effects on manufacturing output and employment of carbon prices covering the Regional Greenhouse Gas Initiative (RGGI) in the Northeast and Mid-Atlantic regions. A carbon price of $10 per metric ton on electricity output reduces employment in the regulated region by 2.7 percent, and raises employment in nearby states by 0.8 percent, although these estimates do not account for revenue recycling in the RGGI region that could mitigate these employment changes. The effects on output are broadly similar. National employment falls just 0.1 percent, suggesting that domestic plants in other states as opposed to foreign facilities are the principal winners from state or regional carbon pricing.
View Full
Paper PDF
-
Electricity Pricing to U.S. Manufacturing Plants, 1963-2000
October 2007
Working Paper Number:
CES-07-28
We construct a large customer-level database and use it to study electricity pricing patterns from 1963 to 2000. The data show tremendous cross-sectional dispersion in the electricity prices paid by manufacturing plants, reflecting spatial price differences and quantity discounts. Price dispersion declined sharply between 1967 and 1977 because of erosion in quantity discounts. To estimate the role of cost factors and markups in quantity discounts, we exploit differences among utilities in the purchases distribution of their customers. The estimation results reveal that supply costs per watt-hour decline by more than half over the range of customer-level purchases in the data, regardless of time period. Prior to the mid 1970s, marginal price and marginal cost schedules with respect to annual purchase quantity are remarkably similar, in line with efficient pricing. In later years, marginal supply costs exceed marginal prices for smaller manufacturing customers by 10% or more. The evidence provides no support for a standard Ramsey-pricing interpretation of quantity discounts on the margin we study. Spatial dispersion in retail electricity prices among states, counties and utility service territories is large, rises over time for smaller purchasers, and does not diminish as wholesale power markets expand in the 1990s.
View Full
Paper PDF
-
The Real Effects of Hedge Fund Activism: Productivity, Risk, and Product Market Competition
July 2012
Working Paper Number:
CES-12-14
This paper studies the long-term effect of hedge fund activism on the productivity of target firms using plant-level information from the U.S. Census Bureau. A typical target firm improves its production efficiency within two years after activism, and this improvement is concentrated in industries with a high degree of product market competition. By following plants that were sold post-intervention, we also find that efficient capital redeployment is an important channel via which activists create value. Furthermore, our analyses demonstrate that measuring performance using the Compustat data is likely to lead to a downward bias because target firms experiencing greater improvement post-intervention are also more likely to disappear from the Compustat database. Finally, consistent with recent work in asset-pricing linking firm investment decisions and expected returns, we show how changes to target firms' productivity are associated with a decline in systemic risk, particularly in competitive industries.
View Full
Paper PDF
-
Technical Inefficiency And Productive Decline In The U.S. Interstate Natural Gas Pipeline Industry Under The Natural Gas Policy Act
October 1991
Working Paper Number:
CES-91-06
The U.S. natural gas industry has undergone substantial change since the enactment of the Natural Gas Policy Act of 1978. Although the major focus of the NGPA was to initiate partial and gradual price deregulation of natural gas at the well-head, the interstate transmission industry was profoundly affected by changes in the relative prices of competing fuels and contractual relationships among producers, transporters, distributors, and end-users. This paper assesses the impact of the NGPA on the technical efficiency and productivity of fourteen interstate natural gas transmission firms for the period 1978-1985. We focus on the distortionary effects that resulted in the industry during a period in which changes in regulatory policy could neither anticipate changing market conditions nor rapidly adjust to those changes. Two alternative estimating methodologies, stochastic frontier production analysis and data envelopment analysis, are used to measure the firm-specific and temporal distortionary effects. Concordant findings from these alternative methodologies suggest a pervasive pattern of declining technical efficiency in the industry during the period in which this major regulatory intervention was introduced and implemented. The representative firms experience an average annual decline in efficiency of .55 percent over the sample period. In addition, it appears that the industry suffered a decline in productivity during the sample period, averaging -1.18 percent annually.
View Full
Paper PDF
-
Industrial Investments in Energy Efficiency: A Good Idea?
January 2017
Working Paper Number:
CES-17-05
Yes, from an energy-saving perspective. No, once we factor in the negative output and productivity adoption effects. These are the main conclusions we reach by conducting the first large-scale study on cogeneration technology adoption ' a prominent form of energy-saving investments ' in the U.S. manufacturing sector, using a sample that runs from 1982 to 2010 and drawing on multiple data sources from the U.S. Census Bureau and the U.S. Energy Information Administration. We first show through a series of event studies that no differential trends exist in energy consumption nor production activities between adopters and never-adopters prior to the adoption event. We then compute a distribution of realized returns to energy savings, using accounting methods and regression methods, based on our difference-in-difference estimator. We find that (1) significant heterogeneity exists in returns; (2) unlike previous studies in the residential sector, the realized and projected returns to energy savings are roughly consistent in the industrial sector, for both private and social returns; (3) however, cogeneration adoption decreases manufacturing output and productivity persistently for at least the next 7-10 years, relative to the control group. Our IV strategies also show sizable decline in TFP post adoption.
View Full
Paper PDF