We construct a large customer-level database and use it to study electricity pricing patterns from 1963 to 2000. The data show tremendous cross-sectional dispersion in the electricity prices paid by manufacturing plants, reflecting spatial price differences and quantity discounts. Price dispersion declined sharply between 1967 and 1977 because of erosion in quantity discounts. To estimate the role of cost factors and markups in quantity discounts, we exploit differences among utilities in the purchases distribution of their customers. The estimation results reveal that supply costs per watt-hour decline by more than half over the range of customer-level purchases in the data, regardless of time period. Prior to the mid 1970s, marginal price and marginal cost schedules with respect to annual purchase quantity are remarkably similar, in line with efficient pricing. In later years, marginal supply costs exceed marginal prices for smaller manufacturing customers by 10% or more. The evidence provides no support for a standard Ramsey-pricing interpretation of quantity discounts on the margin we study. Spatial dispersion in retail electricity prices among states, counties and utility service territories is large, rises over time for smaller purchasers, and does not diminish as wholesale power markets expand in the 1990s.
-
Productivity Dispersion and Input Prices: The Case of Electricity
September 2008
Working Paper Number:
CES-08-33
We exploit a rich new database on Prices and Quantities of Electricity in Manufacturing (PQEM) to study electricity productivity in the U.S. manufacturing sector. The database contains nearly 2 million customer-level observations (i.e., manufacturing plants) from 1963 to 2000. It allows us to construct plant-level measures of price paid per kWh, output per kWh, output per dollar spent on electric power and labor productivity. Using this database, we first document tremendous dispersion among U.S. manufacturing plants in electricity productivity measures and a strong negative relationship between price per kWh and output per kWh hour within narrowly defined industries. Using an IV strategy to isolate exogenous price variation, we estimate that the average elasticity of output per kWh with respect to the price of electricity is about 0.6 during the period from 1985 to 2000. We also develop evidence that this price-physical efficiency tradeoff is stronger for industries with bigger electricity cost shares. Finally, we develop evidence that stronger competitive pressures in the output market lead to less dispersion among manufacturing plants in price per kWh and in electricity productivity measures. The strength of competition effects on dispersion is similar for electricity productivity and labor productivity.
View Full
Paper PDF
-
The U.S. Manufacturing Sector's Response to Higher Electricity Prices: Evidence from State-Level Renewable Portfolio Standards
October 2022
Working Paper Number:
CES-22-47
While several papers examine the effects of renewable portfolio standards (RPS) on electricity prices, they mainly rely on state-level data and there has been little research on how RPS policies affect manufacturing activity via their effect on electricity prices. Using plant-level data for the entire U.S. manufacturing sector and all electric utilities from 1992 ' 2015, we jointly estimate the effect of RPS adoption and stringency on plant-level electricity prices and production decisions. To ensure that our results are not sensitive to possible pre-existing differences across manufacturing plants in RPS and non-RPS states, we implement coarsened exact covariate matching. Our results suggest that electricity prices for plants in RPS states averaged about 2% higher than in non-RPS states, notably lower than prior estimates based on state-level data. In response to these higher electricity prices, we estimate that plant electricity usage declined by 1.2% for all plants and 1.8% for energy-intensive plants, broadly consistent with published estimates of the elasticity of electricity demand for industrial users. We find smaller declines in output, employment, and hours worked (relative to the decline in electricity use). Finally, several key RPS policy design features that vary substantially from state-to-state produce heterogeneous effects on plant-level electricity prices.
View Full
Paper PDF
-
Technical Inefficiency And Productive Decline In The U.S. Interstate Natural Gas Pipeline Industry Under The Natural Gas Policy Act
October 1991
Working Paper Number:
CES-91-06
The U.S. natural gas industry has undergone substantial change since the enactment of the Natural Gas Policy Act of 1978. Although the major focus of the NGPA was to initiate partial and gradual price deregulation of natural gas at the well-head, the interstate transmission industry was profoundly affected by changes in the relative prices of competing fuels and contractual relationships among producers, transporters, distributors, and end-users. This paper assesses the impact of the NGPA on the technical efficiency and productivity of fourteen interstate natural gas transmission firms for the period 1978-1985. We focus on the distortionary effects that resulted in the industry during a period in which changes in regulatory policy could neither anticipate changing market conditions nor rapidly adjust to those changes. Two alternative estimating methodologies, stochastic frontier production analysis and data envelopment analysis, are used to measure the firm-specific and temporal distortionary effects. Concordant findings from these alternative methodologies suggest a pervasive pattern of declining technical efficiency in the industry during the period in which this major regulatory intervention was introduced and implemented. The representative firms experience an average annual decline in efficiency of .55 percent over the sample period. In addition, it appears that the industry suffered a decline in productivity during the sample period, averaging -1.18 percent annually.
View Full
Paper PDF
-
How Does State-Level Carbon Pricing in the United States Affect Industrial Competitiveness?
June 2020
Working Paper Number:
CES-20-21
Pricing carbon emissions from an individual jurisdiction may harm the competitiveness of local firms, causing the leakage of emissions and economic activity to other regions. Past research concentrates on national carbon prices, but the impacts of subnational carbon prices could be more severe due to the openness of regional economies. We specify a flexible model to capture competition between a plant in a state with electric sector carbon pricing and plants in other states or countries without such pricing. Treating energy prices as a proxy for carbon prices, we estimate model parameters using confidential plant-level Census data, 1982'2011. We simulate the effects on manufacturing output and employment of carbon prices covering the Regional Greenhouse Gas Initiative (RGGI) in the Northeast and Mid-Atlantic regions. A carbon price of $10 per metric ton on electricity output reduces employment in the regulated region by 2.7 percent, and raises employment in nearby states by 0.8 percent, although these estimates do not account for revenue recycling in the RGGI region that could mitigate these employment changes. The effects on output are broadly similar. National employment falls just 0.1 percent, suggesting that domestic plants in other states as opposed to foreign facilities are the principal winners from state or regional carbon pricing.
View Full
Paper PDF
-
Output Price And Markup Dispersion In Micro Data: The Roles Of Producer And Heterogeneity And Noise
August 1997
Working Paper Number:
CES-97-10
This paper provides empirical evidence on the extent of producer heterogeneity in the output market by analyzing output price and price-marginal cost markups at the plant level for thirteen homogeneous manufactured goods. It relies on micro data from the U.S. Census of Manufactures over the 1963-1987 period. The amount of price heterogeneity varies substantially across products. Over time, plant transition patterns indicate more persistence in the pricing of individual plants than would be generated by purely random movements. High-price and low-price plants remain in the same part of the price distribution with high frequency, suggesting that underlying time-invariant structural factors contribute to the price dispersion. For all but two products, large producers have lower output prices. Marginal cost and the markups are estimated for each plant. The markup remains unchanged or increases with plant size for all but four of the products and declining marginal costs play an important role in generating this pattern. The lower production costs for large producers are, at least partially, passed on to purchasers as lower output prices. Plants with the highest and lowest markups tend to remain so over time, although overall the persistence in markups is less than for output price, suggesting a larger role for idiosyncratic shocks in generating markup variation.
View Full
Paper PDF
-
Empirical Distribution of the Plant-Level Components of Energy and Carbon Intensity at the Six-digit NAICS Level Using a Modified KAYA Identity
September 2024
Working Paper Number:
CES-24-46
Three basic pillars of industry-level decarbonization are energy efficiency, decarbonization of energy sources, and electrification. This paper provides estimates of a decomposition of these three components of carbon emissions by industry: energy intensity, carbon intensity of energy, and energy (fuel) mix. These estimates are constructed at the six-digit NAICS level from non-public, plant-level data collected by the Census Bureau. Four quintiles of the distribution of each of the three components are constructed, using multiple imputation (MI) to deal with non-reported energy variables in the Census data. MI allows the estimates to avoid non-reporting bias. MI also allows more six-digit NAICS to be estimated under Census non-disclosure rules, since dropping non-reported observations may have reduced the sample sizes unnecessarily. The estimates show wide variation in each of these three components of emissions (intensity) and provide a first empirical look into the plant-level variation that underlies carbon emissions.
View Full
Paper PDF
-
Technology Lock-In and Costs of Delayed Climate Policy
July 2023
Working Paper Number:
CES-23-33
This paper studies the implications of current energy prices for future energy efficiency and climate policy. Using U.S. Census microdata and quasi-experimental variation in energy prices, we first show that manufacturing plants that open when electricity prices are low consume more energy throughout their lifetime, regardless of current electricity prices. We then estimate that a persistent bias of technological change toward energy can explain the long-term effects of entry-year electricity prices on energy intensity. Overall, this 'technology lock-in' implies that increasing entry-year electricity prices by 10% would decrease a plant's energy intensity of production by 3% throughout its lifetime.
View Full
Paper PDF
-
The Effects of Environmental Regulation on the Competiveness of U.S. Manufacturing
January 2011
Working Paper Number:
CES-11-03
Whether and to what extent environmental regulations influence the competitiveness of firms remains a hotly debated issue. Using detailed production data from tens of thousands of U.S. manufacturing plants drawn from Annual Survey of Manufactures, we estimate the effects of environmental regulations'captured by the Clean Air Act Amendments' division of counties into pollutant-specific nonattainment and attainment categories'on manufacturing plants' total factor productivity (TFP) levels. We find that among surviving polluting plants, a nonattainment designation is associated with a roughly 2.6 percent decline in TFP. The regulations governing ozone have particularly discernable effects on productivity, though effects are also seen among particulates and sulfur dioxide emitters. Carbon monoxide nonattainment, on the other hand, appears to increase measured TFP, though this appears to be concentrated among refineries. When we apply corrections for two likely sources of positive bias in these estimates (price mismeasurement and sample selection on survival), we estimate that the total TFP loss for polluting plants in nonattaining counties is 4.8 percent. This corresponds to an annual lost output in the manufacturing sector of roughly $14.7 billion in 1987 dollars ($24.4 billion in 2009 dollars). These costs have important implications for both the intensity and location of firm expansions.
View Full
Paper PDF
-
Relative Effectiveness of Energy Efficiency Programs versus Market Based Climate Policies in the Chemical Industry
April 2018
Working Paper Number:
CES-18-16
This paper addresses the relative effectiveness of market vs program based climate policies. We compute the carbon price resulting in an equivalent reduction in energy from programs that eliminate the efficiency gap. A reduced-form stochastic frontier energy demand analysis of plant level electricity and fuel data, from energy-intensive chemical sectors, jointly estimates the distribution of energy efficiency and underlying price elasticities. The analysis controls for plant level price endogeneity and heterogeneity to obtain a decomposition of efficiency into persistent (PE) and time-varying (TVE) components. Total inefficiency is relatively small and price elasticities are relatively high. If all plants performed at the 90th percentile of their efficiency distribution, the reduction in energy is between 4% and 13%. A modest carbon price of between $9.48/ton and $14.01/ton CO2 would achieve reductions in energy use equivalent to all manufacturing plants making improvements to close the efficiency gap.
View Full
Paper PDF
-
Costs, Demand, and Imperfect Competition as Determinants of Plant_level Output Prices
June 1992
Working Paper Number:
CES-92-05
The empirical modeling of imperfectly competitive markets has been constrained by the difficulty of obtaining micro data on individual producer prices, outputs, and costs. In this paper we utilize micro data collected from the 1977 Census of Manufactures to study the determinants of plant-level output prices among U.S. bread producers. A theoretical model of short-run price competition among plants producing differentiated products is used to specify reduced-form equations for each plant's price and output. Estimates of the reduced-form equations indicate that the main determinants of both the plant's output level and output price are the plant's own cost variables, particularly its capital stock and the prices of material inputs. The number of rival producers faced by the plant, the production costs of these rivals, and the demand conditions faced by the plant play no role in price or output determination. The results are not consistent with either oligopolistic competition or monopoly behavior, but rather are consistent with price-taking behavior by individual producers combined with output quality differentials across producers.
View Full
Paper PDF