-
The Impact of Industrial Opt-Out from Utility Sponsored Energy Efficiency Programs
October 2023
Working Paper Number:
CES-23-52
Industry accounts for one-third of energy consumption in the US. Studies suggest that energy efficiency opportunities represent a potential energy resource for regulated utilities and have resulted in rate of return regulated demand-side management (DSM) and energy efficiency (EE) programs. However, many large customers are allowed to self-direct or opt-out. In the Carolinas (NC and SC), over half of industrial and large commercial customers have selected to opt out. Although these customers claim they invest in EE improvements when it is economic and cost-effective to do so, there is no mechanism to validate whether they actually achieved energy savings. This project examines the industrial energy efficiency between the program participants and non participants in the Carolinas by utilizing the non-public Census of Manufacturing data and the public list of firms that have chosen to opt out. We compare the relative energy efficiency between the stay-in and opt-out plants. The t-test results suggest opt-out plants are less efficient. However, the opt-out decisions are not random; large plants or plants belonging to large firms are more likely to opt out, possibly because they have more information and resources. We conduct a propensity score matching method to account for factors that could affect the opt-out decisions. We find that the opt-out plants perform at least as well or slightly better than the stay-in plants. The relative performance of the opt-out firms suggest that they may not need utility program resources to obtain similar levels of efficiency from the stay-in group.
View Full
Paper PDF
-
The Energy Efficiency Gap and Energy Price Responsiveness in Food Processing
June 2020
Working Paper Number:
CES-20-18
This paper estimates stochastic frontier energy demand functions with non-public, plant-level data from the U.S. Census Bureau to measure the energy efficiency gap and energy price elasticities in the food processing industry. The estimates are for electricity and fuel use in 4 food processing sectors, based on the disaggregation of this industry used by the National Energy Modeling System Industrial Demand Module. The estimated demand functions control for plant inputs and output, energy prices, and other observables including 6-digit NAICS industry designations. Own price elasticities range from 0.6 to -0.9 with little evidence of fuel/electricity substitution. The magnitude of the efficiency estimates is sensitive to the assumptions but consistently reveal that few plants achieve 100% efficiency. Defining a 'practical level of energy efficiency' as the 95th percentile of the efficiency distributions and averaging across all the models result in a ~20% efficiency gap. However, most of the potential reductions in energy use from closing this efficiency gap are from plants that are 'low hanging fruit'; 13% of the 20% potential reduction in the efficiency gap can be obtained by bringing the lower half of the efficiency distribution up to just the median level of observed performance. New plants do exhibit higher energy efficiency than existing plants which is statistically significant, but the difference is small for most of the industry; ranging from a low of 0.4% to a high of 5.7%.
View Full
Paper PDF
-
Relative Effectiveness of Energy Efficiency Programs versus Market Based Climate Policies in the Chemical Industry
April 2018
Working Paper Number:
CES-18-16
This paper addresses the relative effectiveness of market vs program based climate policies. We compute the carbon price resulting in an equivalent reduction in energy from programs that eliminate the efficiency gap. A reduced-form stochastic frontier energy demand analysis of plant level electricity and fuel data, from energy-intensive chemical sectors, jointly estimates the distribution of energy efficiency and underlying price elasticities. The analysis controls for plant level price endogeneity and heterogeneity to obtain a decomposition of efficiency into persistent (PE) and time-varying (TVE) components. Total inefficiency is relatively small and price elasticities are relatively high. If all plants performed at the 90th percentile of their efficiency distribution, the reduction in energy is between 4% and 13%. A modest carbon price of between $9.48/ton and $14.01/ton CO2 would achieve reductions in energy use equivalent to all manufacturing plants making improvements to close the efficiency gap.
View Full
Paper PDF
-
Measuring Plant Level Energy Efficiency and Technical Change in the U.S. Metal-Based Durable Manufacturing Sector Using Stochastic Frontier Analysis
January 2016
Working Paper Number:
CES-16-52
This study analyzes the electric and thermal energy efficiency for five different metal-based durable manufacturing industries in the United States from 1987-2012 at the 3 digit North American Industry Classification System (NAICS) level. Using confidential plant-level data on energy use and production from the quinquennial U.S. Economic Census, a stochastic frontier regression analysis (SFA) is applied in six repeated cross sections for each five year census. The SFA controls for energy prices and climate-driven energy demand (heating degree days - HDD - and cooling degree days - CDD) due to differences in plant level locations, as well as 6-digit NAICS industry effects. A Malmquist index is used to decompose aggregate plant technical change in energy use into indices of efficiency and frontier (best practice) change. Own energy price elasticities range from -.7 to -1.0, with electricity tending to have slightly higher elasticity than fuel. Mean efficiency estimates (100 percent equals best practice level) range from a low of 32 percent (thermal 334 - Computer and Electronic Products) to a high of 86 percent (electricity 332 - Fabricated Metal Products). Electric efficiency is consistently better than thermal efficiency for all NAICS. There is no clear pattern to the decomposition of aggregate technical Thermal change. In some years efficiency improvement dominates; in other years aggregate technical change is driven by improvement in best practice.
View Full
Paper PDF
-
Environmental Regulation, Abatement, and Productivity: A Frontier Analysis
September 2013
Working Paper Number:
CES-13-51
This research studies the link between environmental regulation and plant level productivity in two U.S. manufacturing industries: pulp and paper mills and oil refineries using Data Envelopment Analysis (DEA) models. Data on abatement spending, emissions and abated emissions are used in different DEA models to study plant productivity outcomes when accounting for abatement spending or emissions regulations. Results indicate that pulp and paper mills and oil refineries in the U.S. suffered decreases in productivity due to pollution abatement activities from 1974 to 2000. These losses in productivity are substantial but have been slowly trending downwards even when the regulations have tended to become more stringent and emission of pollutants has declined suggesting that the best practice has shifted over time. Results also show that the reported abatement expenditures are not able to explain all the losses arising out of regulation suggesting that these abatement expenditures are consistently under-reported.
View Full
Paper PDF
-
EVIDENCE OF AN 'ENERGY-MANAGEMENT GAP' IN U.S. MANUFACTURING:
SPILLOVERS FROM FIRM MANAGEMENT PRACTICES TO ENERGY EFFICIENCY
April 2013
Working Paper Number:
CES-13-25
In this paper we merge a well-cited survey of firm management practices into confidential U.S. Census microdata to examine whether generic, i.e. non-energy specific, firm management practices, 'spillover' to enhance energy efficiency in the United States. We find the relationship in U.S. plants to be more nuanced than past research on UK plants has suggested. Most management techniques have beneficial spillovers to energy efficiency, but an emphasis on generic targets, conditional on other management practices, results in spillovers that increase energy intensity. Our specification controls for industry specific effects at a detailed 6-digit NAICS level and shows that this result is stronger for firms in energy intensive industries. We interpret the empirical result that generic management practices do not necessarily spillover to improved energy performance as evidence of an 'energy management gap.'
View Full
Paper PDF
-
Misallocation and Manufacturing TFP in China and India
February 2009
Working Paper Number:
CES-09-04
Resource misallocation can lower aggregate total factor productivity (TFP). We use micro data on manufacturing establishments to quantify the potential extent of misallocation in China and India compared to the U.S. Compared to the U.S., we measure sizable gaps in marginal products of labor and capital across plants within narrowly-defined industries in China and India. When capital and labor are hypothetically reallocated to equalize marginal products to the extent observed in the U.S., we calculate manufacturing TFP gains of 30-50% in China and 40-60% in India.
View Full
Paper PDF
-
Productivity Dispersion and Input Prices: The Case of Electricity
September 2008
Working Paper Number:
CES-08-33
We exploit a rich new database on Prices and Quantities of Electricity in Manufacturing (PQEM) to study electricity productivity in the U.S. manufacturing sector. The database contains nearly 2 million customer-level observations (i.e., manufacturing plants) from 1963 to 2000. It allows us to construct plant-level measures of price paid per kWh, output per kWh, output per dollar spent on electric power and labor productivity. Using this database, we first document tremendous dispersion among U.S. manufacturing plants in electricity productivity measures and a strong negative relationship between price per kWh and output per kWh hour within narrowly defined industries. Using an IV strategy to isolate exogenous price variation, we estimate that the average elasticity of output per kWh with respect to the price of electricity is about 0.6 during the period from 1985 to 2000. We also develop evidence that this price-physical efficiency tradeoff is stronger for industries with bigger electricity cost shares. Finally, we develop evidence that stronger competitive pressures in the output market lead to less dispersion among manufacturing plants in price per kWh and in electricity productivity measures. The strength of competition effects on dispersion is similar for electricity productivity and labor productivity.
View Full
Paper PDF
-
How Does Venture Capital Financing Improve Efficiency in Private Firms? A Look Beneath the Surface
June 2008
Working Paper Number:
CES-08-16
Using a unique sample from the Longitudinal Research Database (LRD) of the U.S. Census Bureau, we study several related questions regarding the efficiency gains generated by venture capital (VC) investment in private firms. First, does VC backing improve the efficiency (total factor productivity, TFP) of private firms, and are certain kinds of VCs (higher reputation versus lower reputation) better at generating such efficiency gains than others? Second, how are such efficiency gains generated: Do venture capitalists invest in more efficient firms to begin with (screening) or do they improve efficiency after investment (monitoring)? Third, how are these efficiency gains spread out over rounds subsequent to VC investment? Fourth, what are the channels through which such efficiency gains are generated: increases in product market performance (sales) or reductions in various costs (labor, materials, total production costs)? Finally, how do such efficiency gains affect the probability of a successful exit (IPO or acquisition)? Our main findings are as follows. First, the overall efficiency of VC backed firms is higher than that of non-VC backed firms. Second, this efficiency advantage of VC backed firms arises from both screening and monitoring: the efficiency of VC backed firms prior to receiving financing is higher than that of non-VC backed firms and further, the growth in efficiency subsequent to receiving VC financing is greater for such firms relative to non-VC backed firms. Third, the above increase in efficiency of VC backed firms relative to non-VC backed firms increases over the first two rounds of VC financing, and remains at the higher level till exit. Fourth, while the TFP of firms prior to VC financing is lower for higher reputation VC backed firms, the increase in TFP subsequent to financing is significantly higher for the former firms, consistent with higher reputation VCs having greater monitoring ability. Fifth, the efficiency gains generated by VC backing arise primarily from improvement in product market performance (sales); however for higher reputation VCs, the additional efficiency gains arise from both an additional improvement in product market performance as well as from reductions in various input costs. Finally, both the level of TFP of VC backed firms prior to receiving financing and the growth in TFP subsequent to VC financing positively affect the probability of a successful exit (IPO or acquisition).
View Full
Paper PDF
-
Estimating the Distribution of Plant-Level Manufacturing Energy Efficiency with Stochastic Frontier Regression
March 2007
Working Paper Number:
CES-07-07
A feature commonly used to distinguish between parametric/statistical models and engineering models is that engineering models explicitly represent best practice technologies while the parametric/statistical models are typically based on average practice. Measures of energy intensity based on average practice are less useful in the corporate management of energy or for public policy goal setting. In the context of company or plant level energy management, it is more useful to have a measure of energy intensity capable of representing where a company or plant lies within a distribution of performance. In other words, is the performance close (or far) from the industry best practice? This paper presents a parametric/statistical approach that can be used to measure best practice, thereby providing a measure of the difference, or 'efficiency gap' at a plant, company or overall industry level. The approach requires plant level data and applies a stochastic frontier regression analysis to energy use. Stochastic frontier regression analysis separates the energy intensity into three components, systematic effects, inefficiency, and statistical (random) error. The stochastic frontier can be viewed as a sub-vector input distance function. One advantage of this approach is that physical product mix can be included in the distance function, avoiding the problem of aggregating output to define a single energy/output ratio to measure energy intensity. The paper outlines the methods and gives an example of the analysis conducted for a non-public micro-dataset of wet corn refining plants.
View Full
Paper PDF