CREAT: Census Research Exploration and Analysis Tool

The Effect Of Technology Use On Productivity Growth

April 1996

Working Paper Number:

CES-96-02

Abstract

This paper examines the relationship between the use of advanced technologies and productivity and productivity growth rates. We use data from the 1993 and 1988 Survey of Manufacturing Technology (SMT) to examine the use of advanced (computer based) technologies at two different points in time. We are also able to combine the survey data with the Longitudinal Research Database (LRD) to examine the relationships between plant performance, plant characteristics, and the use of advanced technologies. In addition, a subset of these plants were surveyed in both years, enabling us to directly associate changes in technology use with changes in plant productivity performance. The main findings of the study are as follows. First, diffusion is not the same across the surveyed technologies. Second, the adoption process is not smooth: plants added and dropped technologies over the six-year interval 1988-93. In fact, the average plant showed a gross change of roughly four technologies in achieving an average net increase of less than one new technology. In this regard, technology appears to be an experience good: plants experiment with particular technologies before deciding to add additional units or drop the technology entirely. We find that establishments that use advanced technologies exhibit higher productivity. This relationship is observed in both 1988 and 1993 even after accounting for other important factors associated with productivity: size, age, capital intensity, labor skill mix, and other controls for plant characteristics such as industry and region. In addition, the relationship between productivity and advanced technology use is observed both in the extent of technologies used and the intensity of their use. Finally, while there is some evidence that the use of advanced technologies is positively related to improved productivity performance, the data suggest that the dominant explanation for the observed cross-section relationship is that good performers are more likely to use advanced technologies than poorly performing operations.

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
production, productive, econometric, manufacturing, industrial, productivity growth, technology, growth, technical, technological, tech, manufacturer, research, growth productivity, innovation, technology adoption, plant productivity, productivity plants, performance, computer, developed

Tags Tags are automatically generated using a pretrained language model from spaCy, which excels at several tasks, including entity tagging.

The model is able to label words and phrases by part-of-speech, including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are identified to contain references to specific institutions, datasets, and other organizations.
:
Department of Commerce, Longitudinal Research Database, National Bureau of Economic Research, Cobb-Douglas, Labor Productivity, Fabricated Metal Products, Survey of Manufacturing Technology, Computer Aided Design

Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with 🔥 are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'The Effect Of Technology Use On Productivity Growth' are listed below in order of similarity.