We propose a model for explaining the demand for human capital based on a CES production function with human capital as an explicit argument in the function. The resulting factor demand model is tested with data on roughly 6,000 plants from the Census Bureau's Longitudinal Research Database. The results show strong complementarity between physical and human capital. Moreover, the complementarity is greater in high than in low technology industries. The results also show that physical capital of more recent vintage is associated with a higher demand for human capital. While the age of a plant as a reflection of learning-by-doing is positively related to the accumulation of human capital, this relation is more pronounced in low technology industries.
-
Decomposing Learning By Doing in New Plants
December 1992
Working Paper Number:
CES-92-16
The paper examines learning by doing in the context of a production function in which the other arguments are labor, human capital, physical capital, and vintage as a proxy for embodied technical change in physical capital. Learning is further decomposed into organization learning, capital learning, and manual task learning. The model is tested with time series and cross section data for various samples of up to 2,150 plants over a 14 year period. Word Perfect Version
View Full
Paper PDF
-
Managerial Efficiency, Organizational Capital and Productivity
March 2003
Working Paper Number:
CES-03-08
The paper focuses on the impact of managerial efficiency on output. Three sources of managerial efficiency are identified: (a) superior initial managerial endowments, (b) the accumulation of managerial knowledge and skills through learning and (c) the impact of an effective market for managerial resources internal to the firm. All three are explicitly measured by appropriate variables and their impact is examined in the context of variously specified production functions. The empirical analysis is carried out with data for approximately 5,000 new manufacturing plants in the United States over the 1973-92 period. It is found that variation in managerial endowments is an important explanatory variable for output with all other relevant inputs controlled. It is further found that the survival of plants with superior managerial efficiency, and the death of those with inferior efficiency, explains a substantial fraction of total factor productivity change in the manufacturing sector of the U.S. economy. There is also clear evidence of the significance for efficiency of internal markets as well as evidence of learning as plants age. Learning and superior managerial resources of old plants largely offset the benefits of capital goods of later vintage of new plants.
View Full
Paper PDF
-
The Life Cycles of Industrial Plants
October 2001
Working Paper Number:
CES-01-10
The paper presents a dynamic programming model with multiple classes of capital goods to explain capital expenditures on existing plants over their lives. The empirical specification shows that the path of capital expenditures is explained by (a) complementarities between old and new capital goods, (b) the age of plants, (c) an index that captures the rate of technical change and (d) the labor intensiveness of a plant when it is newly born. The model is tested with Census data for roughly 6,000 manufacturing plants that were born after 1972.
View Full
Paper PDF
-
The Survival of Industrial Plants
October 2002
Working Paper Number:
CES-02-25
The study seeks to explain the attrition rate of new manufacturing plants in the United States in terms of three vectors of variables. The first explains how survival of the fittest proceeds through learning by firms (plants) about their own relative efficiency. The second explains how efficiency systematically changes over time and what augments or diminishes it. The third captures the opportunity cost of resources employed in a plant. The model is tested using maximum-likelihood probit analysis with very large samples for successive census years in the 1967-97 period. One sample consists of an unbalanced panel of about three-fourths of a million plants of single and multi-unit firms, or alternatively of about 300,000 plants if only the most reliable data are considered. The second is restricted to the plants of multi-unit firms in the same time span and consists of an unbalanced panel of more than 100,000 plants. The empirical analysis strongly confirms the predictions of the model.
View Full
Paper PDF
-
Decomposing Technical Change
May 1991
Working Paper Number:
CES-91-04
A production function is specified with human capital as a separate argument and with embodied technical change proxied by a variable that measures the average vintage of the stock of capital. The coefficients of this production function are estimated with cross section data for roughly 2,150 new manufacturing plants in 41 industries, and for subsets of this sample. The question of interactions between new investment and initial endowments of capital is then examined with data for roughly 1,400 old plants in 15 industries.
View Full
Paper PDF
-
Industry Learning Environments and the Heterogeneity of Firm Performance
December 2006
Working Paper Number:
CES-06-29
This paper characterizes inter-industry heterogeneity in rates of learning-by-doing and examines how industry learning rates are connected with firm performance. Using data from the Census Bureau and Compustat, we measure the industry learning rate as the coefficient on cumulative output in a production function. We find that learning rates vary considerably among industries and are higher in industries with greater R&D, advertising, and capital intensity. More importantly, we find that higher rates of learning are associated with wider dispersion of Tobin's q and profitability among firms in the industry. Together, these findings suggest that learning intensity represents an important characteristic of the industry environment.
View Full
Paper PDF
-
The Effect Of Technology Use On Productivity Growth
April 1996
Working Paper Number:
CES-96-02
This paper examines the relationship between the use of advanced technologies and productivity and productivity growth rates. We use data from the 1993 and 1988 Survey of Manufacturing Technology (SMT) to examine the use of advanced (computer based) technologies at two different points in time. We are also able to combine the survey data with the Longitudinal Research Database (LRD) to examine the relationships between plant performance, plant characteristics, and the use of advanced technologies. In addition, a subset of these plants were surveyed in both years, enabling us to directly associate changes in technology use with changes in plant productivity performance. The main findings of the study are as follows. First, diffusion is not the same across the surveyed technologies. Second, the adoption process is not smooth: plants added and dropped technologies over the six-year interval 1988-93. In fact, the average plant showed a gross change of roughly four technologies in achieving an average net increase of less than one new technology. In this regard, technology appears to be an experience good: plants experiment with particular technologies before deciding to add additional units or drop the technology entirely. We find that establishments that use advanced technologies exhibit higher productivity. This relationship is observed in both 1988 and 1993 even after accounting for other important factors associated with productivity: size, age, capital intensity, labor skill mix, and other controls for plant characteristics such as industry and region. In addition, the relationship between productivity and advanced technology use is observed both in the extent of technologies used and the intensity of their use. Finally, while there is some evidence that the use of advanced technologies is positively related to improved productivity performance, the data suggest that the dominant explanation for the observed cross-section relationship is that good performers are more likely to use advanced technologies than poorly performing operations.
View Full
Paper PDF
-
The Impact of Vintage and Survival on Productivity: Evidence from Cohorts of U.S. Manufacturing Plants
May 2000
Working Paper Number:
CES-00-06
This paper examines the evolution of productivity in U.S. manufacturing plants from 1963 to 1992. We define a 'vintage effect' as the change in productivity of recent cohorts of new plants relative to earlier cohorts of new plants, and a 'survival effect' as the change in productivity of a particular cohort of surviving plants as it ages. The data show that both factors contribute to industry productivity growth, but play offsetting roles in determining a cohort's relative position in the productivity distribution. Recent cohorts enter with significantly higher productivity than earlier entrants did, while surviving cohorts show significant increases in productivity as they age. These two effects roughly offset each other, however, so there is a rough convergence in productivity across cohorts in 1992 and 1987. (JEL Code: D24, L6)
View Full
Paper PDF
-
The Impact of Ownership Changes: A View from Labor Markets
March 2000
Working Paper Number:
CES-00-02
Previous studies of mergers and acquisition often focus on firms' performance such as profits, productivity and market shares. However, from a broad competition policy perspective, the impacts on labor and wages are crucial. In this study, we use plant-level data for the entire U.S. manufacturing for the period 1977-87 to examine the effects of ownership changes on employment, wages and plant closing. Our principal findings are that ownership changes are not a primary vehicle for cuts in employment and wages, or closing plants. Instead, the typical ownership change appear to increase jobs and their quality as measured by wages. However, some ownership changes, particularly those in bigger plants, are associated with job loss, and the typical worker fares much worse than the typical plant. Finally, we find that plants that changed owners have a higher probability of survival than those that did not. Overall, the impact of ownership changes on labor markets are positive.
View Full
Paper PDF
-
Modelling Technical Progress And Total Factor Productivity: A Plant Level Example
October 1988
Working Paper Number:
CES-88-04
Shifts in the production frontier occur because of changes in technology. A model of how a firm learns to use the new technology, or how it adapts from the first production frontier to the second, is suggested. Two different adaptation paths are embodied in a translog cost function and its attendant cost share equations. The paths are the traditional linear time trend and a learning curve. The model is estimated using establishment level data from a non-regulated industry that underwent a technological shift in the time period covered by the data. The learning curve resulted in more plausible estimates of technical progress and total factor productivity growth patterns. A significant finding is that, at the establishment level, all inputs appear to be substitutes.
View Full
Paper PDF