The Impact of Vintage and Survival on Productivity: Evidence from Cohorts of U.S. Manufacturing Plants
May 2000
Working Paper Number:
CES-00-06
Abstract
Document Tags and Keywords
Keywords
Keywords are automatically generated using KeyBERT, a powerful and innovative
keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant
keywords.
By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the
text, highlighting the most significant topics and trends. This approach not only enhances searchability but
provides connections that go beyond potentially domain-specific author-defined keywords.
:
econometrically,
estimation,
production,
econometric,
manufacturing,
productivity growth,
growth,
industry productivity,
productivity wage,
trend,
competitiveness,
observed productivity,
workforce,
wages productivity,
plant productivity,
productivity plants,
productivity dynamics,
manufacturing productivity
Tags
Tags are automatically generated using a pretrained language model from spaCy, which excels at
several tasks, including entity tagging.
The model is able to label words and phrases by part-of-speech,
including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are
identified to contain references to specific institutions, datasets, and other organizations.
:
Annual Survey of Manufactures,
Longitudinal Research Database,
Center for Economic Studies,
National Bureau of Economic Research
Similar Working Papers
Similarity between working papers are determined by an unsupervised neural
network model
know as Doc2Vec.
Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the
capture of semantic meaning in a way that relates to the context of words within the document. The model learns to
associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as
document classification, clustering, and similarity detection by preserving the order and structure of words. The
document vectors are compared using cosine similarity/distance to determine the most similar working papers.
Papers identified with 🔥 are in the top 20% of similarity.
The 10 most similar working papers to the working paper 'The Impact of Vintage and Survival on Productivity: Evidence from Cohorts of U.S. Manufacturing Plants' are listed below in order of similarity.
-
Working PaperManagerial Efficiency, Organizational Capital and Productivity🔥
March 2003
Working Paper Number:
CES-03-08
The paper focuses on the impact of managerial efficiency on output. Three sources of managerial efficiency are identified: (a) superior initial managerial endowments, (b) the accumulation of managerial knowledge and skills through learning and (c) the impact of an effective market for managerial resources internal to the firm. All three are explicitly measured by appropriate variables and their impact is examined in the context of variously specified production functions. The empirical analysis is carried out with data for approximately 5,000 new manufacturing plants in the United States over the 1973-92 period. It is found that variation in managerial endowments is an important explanatory variable for output with all other relevant inputs controlled. It is further found that the survival of plants with superior managerial efficiency, and the death of those with inferior efficiency, explains a substantial fraction of total factor productivity change in the manufacturing sector of the U.S. economy. There is also clear evidence of the significance for efficiency of internal markets as well as evidence of learning as plants age. Learning and superior managerial resources of old plants largely offset the benefits of capital goods of later vintage of new plants.View Full Paper PDF
-
Working PaperThe Missing Link: Technology, Productivity, and Investment
October 1995
Working Paper Number:
CES-95-12
This paper examines the relationship between productivity, investment, and age for over 14,000 plants in the U.S. manufacturing sector in the 1972-1988 period. Productivity patterns vary significantly due to plant heterogeneity. Productivity first increases and then decreases with respect to plant age, and size and industry are systematically correlated with productivity and productivity growth. However, there is virtually no observable relationship between investment and productivity or productivity growth. Overall, the results indicate that plant heterogeneity and fixed effects are more important determinants of observable productivity patterns than sunk costs or capital reallocation. Key Words: productivity, investment, technical changeView Full Paper PDF
-
Working PaperThe Demand for Human Capital: A Microeconomic Approach
December 2001
Working Paper Number:
CES-01-16
We propose a model for explaining the demand for human capital based on a CES production function with human capital as an explicit argument in the function. The resulting factor demand model is tested with data on roughly 6,000 plants from the Census Bureau's Longitudinal Research Database. The results show strong complementarity between physical and human capital. Moreover, the complementarity is greater in high than in low technology industries. The results also show that physical capital of more recent vintage is associated with a higher demand for human capital. While the age of a plant as a reflection of learning-by-doing is positively related to the accumulation of human capital, this relation is more pronounced in low technology industries.View Full Paper PDF
-
Working PaperIndustry Learning Environments and the Heterogeneity of Firm Performance
December 2006
Working Paper Number:
CES-06-29
This paper characterizes inter-industry heterogeneity in rates of learning-by-doing and examines how industry learning rates are connected with firm performance. Using data from the Census Bureau and Compustat, we measure the industry learning rate as the coefficient on cumulative output in a production function. We find that learning rates vary considerably among industries and are higher in industries with greater R&D, advertising, and capital intensity. More importantly, we find that higher rates of learning are associated with wider dispersion of Tobin's q and profitability among firms in the industry. Together, these findings suggest that learning intensity represents an important characteristic of the industry environment.View Full Paper PDF
-
Working PaperThe Life Cycles of Industrial Plants
October 2001
Working Paper Number:
CES-01-10
The paper presents a dynamic programming model with multiple classes of capital goods to explain capital expenditures on existing plants over their lives. The empirical specification shows that the path of capital expenditures is explained by (a) complementarities between old and new capital goods, (b) the age of plants, (c) an index that captures the rate of technical change and (d) the labor intensiveness of a plant when it is newly born. The model is tested with Census data for roughly 6,000 manufacturing plants that were born after 1972.View Full Paper PDF
-
Working PaperThe Survival of Industrial Plants
October 2002
Working Paper Number:
CES-02-25
The study seeks to explain the attrition rate of new manufacturing plants in the United States in terms of three vectors of variables. The first explains how survival of the fittest proceeds through learning by firms (plants) about their own relative efficiency. The second explains how efficiency systematically changes over time and what augments or diminishes it. The third captures the opportunity cost of resources employed in a plant. The model is tested using maximum-likelihood probit analysis with very large samples for successive census years in the 1967-97 period. One sample consists of an unbalanced panel of about three-fourths of a million plants of single and multi-unit firms, or alternatively of about 300,000 plants if only the most reliable data are considered. The second is restricted to the plants of multi-unit firms in the same time span and consists of an unbalanced panel of more than 100,000 plants. The empirical analysis strongly confirms the predictions of the model.View Full Paper PDF
-
Working PaperTechnology Lock-In and Costs of Delayed Climate Policy
July 2023
Working Paper Number:
CES-23-33
This paper studies the implications of current energy prices for future energy efficiency and climate policy. Using U.S. Census microdata and quasi-experimental variation in energy prices, we first show that manufacturing plants that open when electricity prices are low consume more energy throughout their lifetime, regardless of current electricity prices. We then estimate that a persistent bias of technological change toward energy can explain the long-term effects of entry-year electricity prices on energy intensity. Overall, this 'technology lock-in' implies that increasing entry-year electricity prices by 10% would decrease a plant's energy intensity of production by 3% throughout its lifetime.View Full Paper PDF
-
Working PaperDecomposing Technical Change
May 1991
Working Paper Number:
CES-91-04
A production function is specified with human capital as a separate argument and with embodied technical change proxied by a variable that measures the average vintage of the stock of capital. The coefficients of this production function are estimated with cross section data for roughly 2,150 new manufacturing plants in 41 industries, and for subsets of this sample. The question of interactions between new investment and initial endowments of capital is then examined with data for roughly 1,400 old plants in 15 industries.View Full Paper PDF
-
Working PaperDecomposing Learning By Doing in New Plants
December 1992
Working Paper Number:
CES-92-16
The paper examines learning by doing in the context of a production function in which the other arguments are labor, human capital, physical capital, and vintage as a proxy for embodied technical change in physical capital. Learning is further decomposed into organization learning, capital learning, and manual task learning. The model is tested with time series and cross section data for various samples of up to 2,150 plants over a 14 year period. Word Perfect VersionView Full Paper PDF
-
Working PaperLinking Investment Spikes and Productivity Growth: U.S. Food Manufacturing Industry
October 2008
Working Paper Number:
CES-08-36
We investigate the relationship between productivity growth and investment spikes using Census Bureau's plant-level data set for the U.S. food manufacturing industry. We find that productivity growth increases after investment spikes suggesting an efficiency gain or plants' learning effect. However, efficiency and the learning period associated with investment spikes differ among plants' productivity quartile ranks implying the differences in the plants' investment types such as expansionary, replacement or retooling. We find evidence of both convex and non-convex types of adjustment costs where lumpy plant-level investments suggest the possibility of non-convex adjustment costs and hazard estimation results suggest the possibility of convex adjustment costs. The downward sloping hazard can be due to the unobserved heterogeneity across plants such as plants' idiosyncratic obsolescence caused by different R&D capabilities and implies the existence of convex adjustment costs. Food plants frequently invest during their first few years of operation and high productivity plants postpone investing due to high fixed costs.View Full Paper PDF