This paper examines the relationship between productivity, investment, and age for over 14,000 plants in the U.S. manufacturing sector in the 1972-1988 period. Productivity patterns vary significantly due to plant heterogeneity. Productivity first increases and then decreases with respect to plant age, and size and industry are systematically correlated with productivity and productivity growth. However, there is virtually no observable relationship between investment and productivity or productivity growth. Overall, the results indicate that plant heterogeneity and fixed effects are more important determinants of observable productivity patterns than sunk costs or capital reallocation. Key Words: productivity, investment, technical change
-
Linking Investment Spikes and Productivity Growth: U.S. Food Manufacturing Industry
October 2008
Working Paper Number:
CES-08-36
We investigate the relationship between productivity growth and investment spikes using Census Bureau's plant-level data set for the U.S. food manufacturing industry. We find that productivity growth increases after investment spikes suggesting an efficiency gain or plants' learning effect. However, efficiency and the learning period associated with investment spikes differ among plants' productivity quartile ranks implying the differences in the plants' investment types such as expansionary, replacement or retooling. We find evidence of both convex and non-convex types of adjustment costs where lumpy plant-level investments suggest the possibility of non-convex adjustment costs and hazard estimation results suggest the possibility of convex adjustment costs. The downward sloping hazard can be due to the unobserved heterogeneity across plants such as plants' idiosyncratic obsolescence caused by different R&D capabilities and implies the existence of convex adjustment costs. Food plants frequently invest during their first few years of operation and high productivity plants postpone investing due to high fixed costs.
View Full
Paper PDF
-
Estimating Capital Efficiency Schedules Within Production Functions
May 1992
Working Paper Number:
CES-92-04
The appropriate method for aggregating capital goods across vintages to produce a single capital stock measure has long been a contentious issue, and the literature covering this topic is quite extensive. This paper presents a methodology that estimates efficiency schedules within a production function, allowing the data to reveal how the efficiency of capital goods evolve as they age. Specifically we insert a parameterized investment stream into the position of a capital variable in a production function, and then estimate the parameters of the production function simultaneously with the parameters of the investment stream. Plant level panel data for a select group of steel plants employing a common technology are used to estimate the model. Our primary finding is that when using a simple Cobb Douglas production function, the estimated efficiency schedules appear to follow a geometric pattern, which is consistent with the estimates of economic depreciation of Hulten and Wykoff (1981). Results from more flexible functional forms produced much less precise and unreliable estimates.
View Full
Paper PDF
-
The Impact of Vintage and Survival on Productivity: Evidence from Cohorts of U.S. Manufacturing Plants
May 2000
Working Paper Number:
CES-00-06
This paper examines the evolution of productivity in U.S. manufacturing plants from 1963 to 1992. We define a 'vintage effect' as the change in productivity of recent cohorts of new plants relative to earlier cohorts of new plants, and a 'survival effect' as the change in productivity of a particular cohort of surviving plants as it ages. The data show that both factors contribute to industry productivity growth, but play offsetting roles in determining a cohort's relative position in the productivity distribution. Recent cohorts enter with significantly higher productivity than earlier entrants did, while surviving cohorts show significant increases in productivity as they age. These two effects roughly offset each other, however, so there is a rough convergence in productivity across cohorts in 1992 and 1987. (JEL Code: D24, L6)
View Full
Paper PDF
-
Productivity Growth Patterns in U.S. Food Manufacturing: Case of Dairy Products Industry
May 2004
Working Paper Number:
CES-04-08
A panel constructed from the Census Bureau's Longitudinal Research Database is used to measure total factor productivity growth at the plant-level and analyzes the multifactor bias of technical change at three-digit product group level containing five different four-digit sub-group categories for the U.S. dairy products industry from 1972 through 1995. In the TFP growth decomposition, analyzing the growth and its components according to the quartile ranks show that scale effect is the most significant element of TFP growth except the plants in the third quartile rank where technical change dominates throughout the time periods. The exogenous input bias results show that throughout the time periods, technical change is 1) capital-using; 2) labor-using after 1980; 3) material-saving except 1981-1985 period; and, 4) energy-using except 1981-1985 and 1991-1995 periods. Plant productivity analysis indicate that less than 50% of the plants in the dairy products industry stay in the same category, indicating considerable movement between productivity rank categories. Investment analysis results indicate that plant-level investments are quite lumpy since a relatively small percent of observations account for a disproportionate share of overall investment. Productivity growth is found to be positively correlated with recent investment spikes for plants with TFP ranking in the middle two quartiles and uncorrelated with plants in the smallest and largest quartiles. Similarly, past TFP growth rates present no significant correlation with future investment spikes for plants in any quartile.
View Full
Paper PDF
-
Productivity Growth Patterns in U.S. Food Manufacturing: Case of Meat Products Industry
March 2004
Working Paper Number:
CES-04-04
A panel constructed from the Census Bureau's Longitudinal Research Database is used to measure total factor productivity growth at the plant-level and analyzes the multifactor bias of technical change for the U.S. meat products industry from 1972 through 1995. For example, addressing TFP growth decomposition for the meat products sub-sector by quartile ranks shows that the technical change effect is the dominant element of TFP growth for the first two quartiles, while the scale effect dominates TFP growth for the higher two quartiles. Throughout the time period, technical change is 1) capital-using; 2) material-saving; 3) labor-using; and, 4) energy-saving and becoming energy-using after 1980. The smaller sized plants are more likely to fluctuate in their productivity rankings; in contrast, large plants are more stable in their productivity rankings. Plant productivity analysis indicate that less than 50% of the plants in the meat industry stay in the same category, indicating considerable movement between productivity rank categories. Investment analysis results strongly indicate that plant-level investments are quite lumpy since a relatively small percent of observations account for a disproportionate share of overall investment. Productivity growth is found to be positively correlated with recent investment spikes for plants with TFP ranking in the middle two quartiles and uncorrelated with firms in the smallest and largest quartiles. Similarly, past TFP growth rates are positively correlated with future investment spikes for firms in the same quartiles. \
View Full
Paper PDF
-
The Life Cycles of Industrial Plants
October 2001
Working Paper Number:
CES-01-10
The paper presents a dynamic programming model with multiple classes of capital goods to explain capital expenditures on existing plants over their lives. The empirical specification shows that the path of capital expenditures is explained by (a) complementarities between old and new capital goods, (b) the age of plants, (c) an index that captures the rate of technical change and (d) the labor intensiveness of a plant when it is newly born. The model is tested with Census data for roughly 6,000 manufacturing plants that were born after 1972.
View Full
Paper PDF
-
Job Reallocation And The Business Cycle: New Facts An Old Debate
September 1998
Working Paper Number:
CES-98-11
This paper provides new facts on the nature of job reallocation over the business cycle, and addresses the question of whether reallocation causes recessions or recessions cause reallocation. Although we do not resolve the question of causality, two general findings emerge that advance our understanding of job reallocation and business cycles. First, much of the cyclical fluctuation in gross job flows occurs in larger plants with relatively moderate employment growth that tends to be transitory, especially at medium-term horizons (up to five years). Unusually large employment growth rates, especially plant startups and shutdowns, are primarily small-plant phenomena and tend to be permanent, less cyclical, and occur later in recessions. Further, high job flow rates occur primarily in plants previously experiencing sharp employment contractions or expansions. Second, key variables that should determine the allocation factors of production across plants and sectors do in fact appear to be related to gross job flows, particularly job destruction. Relative prices, productivity, and investment exhibit time series correlations with job reallocation that suggest that allocative driving forces may contribute significantly to business cycle fluctuations.
View Full
Paper PDF
-
An Option-Value Approach to Technology in U.S. Maufacturing: Evidence from Plant-Level Data
July 2000
Working Paper Number:
CES-00-12
Numerous empirical studies have examined the role of firm and industry heterogeneity in the decision to adopt new technologies using a Net Present Value framework. However, as suggested by the recently developed option-value theory, these studies may have overlooked the role of investment reversibility and uncertainty as important determinants of technology adoption. Using the option-value investment model as my underlying theoretical framework, I examine how these two factors affect the decision to adopt three advanced manufacturing technologies. My results support the option-value model's prediction that plants operating in industries facing higher investment reversibility and lower degrees of demand and technological uncertainty are more likely to adopt advanced manufacturing technologies.
View Full
Paper PDF
-
ARE FIXED EFFECTS FIXED? Persistence in Plant Level Productivity
May 1996
Working Paper Number:
CES-96-03
Estimates of production functions suffer from an omitted variable problem; plant quality is an omitted variable that is likely to be correlated with variable inputs. One approach is to capture differences in plant qualities through plant specific intercepts, i.e., to estimate a fixed effects model. For this technique to work, it is necessary that differences in plant quality are more or less fixed; if the "fixed effects" erode over time, such a procedure becomes problematic, especially when working with long panels. In this paper, a standard fixed effects model, extended to allow for serial correlation in the error term, is applied to a 16-year panel of textile plants. This parametric approach strongly accepts the hypothesis of fixed effects. They account for about one-third of the variation in productivity. A simple non-parametric approach, however, concludes that differences in plant qualities erode over time, that is plant qualities f-mix. Monte Carlo results demonstrate that this discrepancy comes from the parametric approach imposing an overly restrictive functional form on the data; if there were fixed effects of the magnitude measured, one would reject the hypothesis of f-mixing. For textiles, at least, the functional form of a fixed effects model appears to generate misleading conclusions. A more flexible functional form is estimated. The "fixed" effects actually have a half life of approximately 10 to 20 years, and they account for about one-half the variation in productivity.
View Full
Paper PDF
-
The Survival of Industrial Plants
October 2002
Working Paper Number:
CES-02-25
The study seeks to explain the attrition rate of new manufacturing plants in the United States in terms of three vectors of variables. The first explains how survival of the fittest proceeds through learning by firms (plants) about their own relative efficiency. The second explains how efficiency systematically changes over time and what augments or diminishes it. The third captures the opportunity cost of resources employed in a plant. The model is tested using maximum-likelihood probit analysis with very large samples for successive census years in the 1967-97 period. One sample consists of an unbalanced panel of about three-fourths of a million plants of single and multi-unit firms, or alternatively of about 300,000 plants if only the most reliable data are considered. The second is restricted to the plants of multi-unit firms in the same time span and consists of an unbalanced panel of more than 100,000 plants. The empirical analysis strongly confirms the predictions of the model.
View Full
Paper PDF