The Survival of Industrial Plants
October 2002
Working Paper Number:
CES-02-25
Abstract
Document Tags and Keywords
Keywords
Keywords are automatically generated using KeyBERT, a powerful and innovative
keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant
keywords.
By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the
text, highlighting the most significant topics and trends. This approach not only enhances searchability but
provides connections that go beyond potentially domain-specific author-defined keywords.
:
estimation,
investment,
production,
estimating,
manufacturing,
industrial,
growth,
firms plants,
produce,
efficiency,
efficient,
regression,
diversification,
innovation,
depreciation,
plant investment,
revenue,
competitor,
plants firms,
plants industry,
gdp,
manufacturing plants
Tags
Tags are automatically generated using a pretrained language model from spaCy, which excels at
several tasks, including entity tagging.
The model is able to label words and phrases by part-of-speech,
including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are
identified to contain references to specific institutions, datasets, and other organizations.
:
Standard Industrial Classification,
Longitudinal Research Database,
Ordinary Least Squares,
Bureau of Economic Analysis,
Census Bureau Longitudinal Business Database
Similar Working Papers
Similarity between working papers are determined by an unsupervised neural
network model
know as Doc2Vec.
Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the
capture of semantic meaning in a way that relates to the context of words within the document. The model learns to
associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as
document classification, clustering, and similarity detection by preserving the order and structure of words. The
document vectors are compared using cosine similarity/distance to determine the most similar working papers.
Papers identified with 🔥 are in the top 20% of similarity.
The 10 most similar working papers to the working paper 'The Survival of Industrial Plants' are listed below in order of similarity.
-
Working PaperManagerial Efficiency, Organizational Capital and Productivity🔥
March 2003
Working Paper Number:
CES-03-08
The paper focuses on the impact of managerial efficiency on output. Three sources of managerial efficiency are identified: (a) superior initial managerial endowments, (b) the accumulation of managerial knowledge and skills through learning and (c) the impact of an effective market for managerial resources internal to the firm. All three are explicitly measured by appropriate variables and their impact is examined in the context of variously specified production functions. The empirical analysis is carried out with data for approximately 5,000 new manufacturing plants in the United States over the 1973-92 period. It is found that variation in managerial endowments is an important explanatory variable for output with all other relevant inputs controlled. It is further found that the survival of plants with superior managerial efficiency, and the death of those with inferior efficiency, explains a substantial fraction of total factor productivity change in the manufacturing sector of the U.S. economy. There is also clear evidence of the significance for efficiency of internal markets as well as evidence of learning as plants age. Learning and superior managerial resources of old plants largely offset the benefits of capital goods of later vintage of new plants.View Full Paper PDF
-
Working PaperThe Demand for Human Capital: A Microeconomic Approach🔥
December 2001
Working Paper Number:
CES-01-16
We propose a model for explaining the demand for human capital based on a CES production function with human capital as an explicit argument in the function. The resulting factor demand model is tested with data on roughly 6,000 plants from the Census Bureau's Longitudinal Research Database. The results show strong complementarity between physical and human capital. Moreover, the complementarity is greater in high than in low technology industries. The results also show that physical capital of more recent vintage is associated with a higher demand for human capital. While the age of a plant as a reflection of learning-by-doing is positively related to the accumulation of human capital, this relation is more pronounced in low technology industries.View Full Paper PDF
-
Working PaperThe Life Cycles of Industrial Plants🔥
October 2001
Working Paper Number:
CES-01-10
The paper presents a dynamic programming model with multiple classes of capital goods to explain capital expenditures on existing plants over their lives. The empirical specification shows that the path of capital expenditures is explained by (a) complementarities between old and new capital goods, (b) the age of plants, (c) an index that captures the rate of technical change and (d) the labor intensiveness of a plant when it is newly born. The model is tested with Census data for roughly 6,000 manufacturing plants that were born after 1972.View Full Paper PDF
-
Working PaperDecomposing Technical Change
May 1991
Working Paper Number:
CES-91-04
A production function is specified with human capital as a separate argument and with embodied technical change proxied by a variable that measures the average vintage of the stock of capital. The coefficients of this production function are estimated with cross section data for roughly 2,150 new manufacturing plants in 41 industries, and for subsets of this sample. The question of interactions between new investment and initial endowments of capital is then examined with data for roughly 1,400 old plants in 15 industries.View Full Paper PDF
-
Working PaperIndustry Learning Environments and the Heterogeneity of Firm Performance
December 2006
Working Paper Number:
CES-06-29
This paper characterizes inter-industry heterogeneity in rates of learning-by-doing and examines how industry learning rates are connected with firm performance. Using data from the Census Bureau and Compustat, we measure the industry learning rate as the coefficient on cumulative output in a production function. We find that learning rates vary considerably among industries and are higher in industries with greater R&D, advertising, and capital intensity. More importantly, we find that higher rates of learning are associated with wider dispersion of Tobin's q and profitability among firms in the industry. Together, these findings suggest that learning intensity represents an important characteristic of the industry environment.View Full Paper PDF
-
Working PaperDecomposing Learning By Doing in New Plants
December 1992
Working Paper Number:
CES-92-16
The paper examines learning by doing in the context of a production function in which the other arguments are labor, human capital, physical capital, and vintage as a proxy for embodied technical change in physical capital. Learning is further decomposed into organization learning, capital learning, and manual task learning. The model is tested with time series and cross section data for various samples of up to 2,150 plants over a 14 year period. Word Perfect VersionView Full Paper PDF
-
Working PaperThe Impact of Vintage and Survival on Productivity: Evidence from Cohorts of U.S. Manufacturing Plants
May 2000
Working Paper Number:
CES-00-06
This paper examines the evolution of productivity in U.S. manufacturing plants from 1963 to 1992. We define a 'vintage effect' as the change in productivity of recent cohorts of new plants relative to earlier cohorts of new plants, and a 'survival effect' as the change in productivity of a particular cohort of surviving plants as it ages. The data show that both factors contribute to industry productivity growth, but play offsetting roles in determining a cohort's relative position in the productivity distribution. Recent cohorts enter with significantly higher productivity than earlier entrants did, while surviving cohorts show significant increases in productivity as they age. These two effects roughly offset each other, however, so there is a rough convergence in productivity across cohorts in 1992 and 1987. (JEL Code: D24, L6)View Full Paper PDF
-
Working PaperIncidence and Performance of Spinouts and Incumbent New Ventures: Role of Selection and Redeployability within Parent Firms
September 2021
Working Paper Number:
CES-21-27
Using matched employer-employee data from 30 U.S. states, we compare spinouts with new ventures formed by incumbents (INCs). We propose a selection-based framework comprising idea selection by parents to internally implement ideas as INCs, entrepreneurial selection by founders to form spinouts, and managerial selection to close ventures. Consistent with parents choosing better ideas in the idea selection stage, we find that INCs perform relatively better than spinouts, and more so with larger parents. Regarding the entrepreneurial selection stage, we find evidence consistent with resource requirements being a greater entry barrier to spinouts and greater information asymmetry promoting spinout formation. Parents' resource redeployment opportunities are associated with lower relative survival of INCs, consistent with their being subject to greater selection pressures in the managerial selection stage.View Full Paper PDF
-
Working PaperAn Option-Value Approach to Technology in U.S. Maufacturing: Evidence from Plant-Level Data
July 2000
Working Paper Number:
CES-00-12
Numerous empirical studies have examined the role of firm and industry heterogeneity in the decision to adopt new technologies using a Net Present Value framework. However, as suggested by the recently developed option-value theory, these studies may have overlooked the role of investment reversibility and uncertainty as important determinants of technology adoption. Using the option-value investment model as my underlying theoretical framework, I examine how these two factors affect the decision to adopt three advanced manufacturing technologies. My results support the option-value model's prediction that plants operating in industries facing higher investment reversibility and lower degrees of demand and technological uncertainty are more likely to adopt advanced manufacturing technologies.View Full Paper PDF
-
Working PaperHuman Capital, Parent Size and the Destination Industry of Spinouts
October 2019
Working Paper Number:
CES-19-30
We study how spinout founders' human capital and parent size relate to founders' propensity to stay in the same industry as their parents or to go outside the industry. Individuals with high human capital face a higher performance penalty if they form spinouts outside the parent industry, but they also face greater deterrence from large parents if they stay in that industry. Using matched employer employee data on spinout founders and their coworkers, we find that individuals with higher human capital are less likely to form spinouts in distant industries than in the parent's industry. Further, we find that as parent size increases, such individuals are less likely to form spinouts in the parent's industry and more likely to form spinouts in distant industries.View Full Paper PDF