Papers Containing Keywords(s): 'productivity impact'
The following papers contain search terms that you selected. From the papers listed below, you can navigate to the PDF, the profile page for that working paper, or see all the working papers written by an author. You can also explore tags, keywords, and authors that occur frequently within these papers.
See Working Papers by Tag(s), Keywords(s), Author(s), or Search Text
Click here to search again
Frequently Occurring Concepts within this Search
Sang V Nguyen - 4
B.K. Atrostic - 4
Viewing papers 1 through 10 of 10
-
Working PaperTwisting the Demand Curve: Digitalization and the Older Workforce
November 2020
Working Paper Number:
CES-20-37
This paper uses U.S. Census Bureau panel data that link firm software investment to worker earnings. We regress the log of earnings of workers by age group on the software investment by their employing firm. To unpack the potential causal factors for differential software effects by age group we extend the AKM framework by including job-spell fixed effects that allow for a correlation between the worker-firm match and age and by including time-varying firm effects that allow for a correlation between wage-enhancing productivity shocks and software investments. Within job-spell, software capital raises earnings at a rate that declines post age 50 to about zero after age 65. By contrast, the effects of non-IT equipment investment on earnings increase for workers post age 50. The difference between the software and non-IT equipment effects suggests that our results are attributable to the technology rather than to age-related bargaining power. Our data further show that software capital increases the earnings of high-wage workers relative to low-wage workers and the earnings in high-wage firms relative to low-wage firms, and may thus widen earnings inequality within and across firms.View Full Paper PDF
-
Working PaperEvaluating the Impact of MEP Services on Establishment Performance: A Preliminary Empirical Investigation
July 2012
Working Paper Number:
CES-12-15
This work examines the impact of manufacturing extension services on establishment productivity. It builds on an earlier study conducted by Jarmin in the 1990s, by matching the Census of Manufacturers (CMF) with the Manufacturing Extension Partnership (MEP) customer and activity datasets to generate treatment and comparison groups for analysis. The scope of the study is the period 1997 to 2002, which was a period of economic downturn in the manufacturing sector and budgetary challenges for the MEP. The paper presents some preliminary findings from this analysis. Both lagged dependent variable (LDV) and difference in difference (DiD) models are employed to estimate the relationship between manufacturing extension and labor productivity. The results presented are inconclusive and paint a mixed picture as they demonstrate the benefits and limitations of using Census microdata in program evaluation. They also point to the need to conduct analyses that could help to better understand the dynamic impact of MEP services.View Full Paper PDF
-
Working PaperComputer Network Use and Firms' Productivity Performance: The United States vs. Japan
September 2008
Working Paper Number:
CES-08-30
This paper examines the relationship between computer network use and firms' productivity performance, using micro-data of the United States and Japan. To our knowledge, this is the first comparative analysis using firm-level data for the manufacturing sector of both countries. We find that the links between IT and productivity differ between U.S. and Japanese manufacturing. Computer networks have positive and significant links with labor productivity in both countries. However, that link is roughly twice as large in the U.S. as in Japan. Differences in how businesses use computers have clear links with productivity for U.S. manufacturing, but not in Japan. For the United States, the coefficients of the intensity of network use are positive and increase with the number of processes. Coefficients of specific uses of those networks are positive and significant. None of these coefficients are significant for Japan. Our findings are robust to alternative econometric specifications. They also are robust to expanding our sample from single-unit manufacturing firms, which are comparable in the two data sets, to the entire manufacturing sector in each country, as well as to the wholesale and retail sector of Japan.View Full Paper PDF
-
Working PaperHow Businesses Use Information Technology: Insights for Measuring Technology and Productivity
June 2006
Working Paper Number:
CES-06-15
Business use of computers in the United States dates back fifty years. Simply investing in information technology is unlikely to offer a competitive advantage today. Differences in how businesses use that technology should drive differences in economic performance. Our previous research found that one business use ' computers linked into networks ' is associated with significantly higher labor productivity. In this paper, we extend our analysis with new information about the ways that businesses use their networks. Those data show that businesses conduct a variety of general processes over computer networks, such as order taking, inventory monitoring, and logistics tracking, with considerable heterogeneity among businesses. We find corresponding empirical diversity in the relationship between these on-line processes and productivity, supporting the heterogeneity hypothesis. On-line supply chain activities such as order tracking and logistics have positive and statistically significant productivity impacts, but not processes associated with production, sales, or human resources. The productivity impacts differ by plant age, with higher impacts in new plants. This new information about the ways businesses use information technology yields vital raw material for understanding how using information technology improves economic performance.View Full Paper PDF
-
Working PaperComputer Investment, Computer Networks and Productivity
January 2005
Working Paper Number:
CES-05-01
Researchers in a large empirical literature find significant relationships between computers and labor productivity, but the estimated size of that relationship varies considerably. In this paper, we estimate the relationships among computers, computer networks, and plant-level productivity in U.S. manufacturing. Using new data on computer investment, we develop a sample with the best proxies for computer and total capital that the data allow us to construct. We find that computer networks and computer inputs have separate, positive, and significant relationships with U.S. manufacturing plant-level productivity. Keywords: computer input; information technology; labor productivityView Full Paper PDF
-
Working PaperPollution Abatement Expenditures and Plant-Level Productivity: A Production Function Approach
August 2003
Working Paper Number:
CES-03-16
In this paper, we investigate the impact of environmental regulation on productivity using a Cobb-Douglas production function framework. Estimating the effects of regulation on productivity can be done with a top-down approach using data for broad sectors of the economy, or a more disaggregated bottom-up approach. Our study follows a bottom-up approach using data from the U.S. paper, steel, and oil industries. We measure environmental regulation using plant-level information on pollution abatement expenditures, which allows us to distinguish between productive and abatement expenditures on each input. We use annual Census Bureau information (1979-1990) on output, labor, capital, and material inputs, and pollution abatement operating costs and capital expenditures for 68 pulp and paper mills, 55 oil refineries, and 27 steel mills. We find that pollution abatement inputs generally contribute little or nothing to output, especially when compared to their 'productive' equivalents. Adding an aggregate pollution abatement cost measure to a Cobb-Douglas production function, we find that a $1 increase in pollution abatement costs leads to an estimated productivity decline of $3.11, $1.80, and $5.98 in the paper, oil, and steel industries respectively. These findings imply substantial differences across industries in their sensitivity to pollution abatement costs, arguing for a bottom-up approach that can capture these differences. Further differentiating plants by their production technology, we find substantial differences in the impact of pollution abatement costs even within industries, with higher marginal costs at plants with more polluting technologies. Finally, in all three industries, plants concentrating on change-in-production-process abatement techniques have higher productivity than plants doing predominantly end-of-line abatement, but also seem to be more affected by pollution abatement operating costs. Overall, our results point to the importance using detailed, disaggregated analyses, even below the industry level, when trying to model the costs of forcing plants to reduce their emissions.View Full Paper PDF
-
Working PaperComputer Networks and U.S. Manufacturing Plant Productivity: New Evidence from the CNUS Data
January 2002
Working Paper Number:
CES-02-01
How do computers affect productivity? Many recent studies argue that using information technology, particularly computers, is a significant source of U.S. productivity growth. The specific mechanism remains elusive. Detailed data on the use of computers and computer networks have been scarce. Plant-level data on the use of computer networks and electronic business processes in the manufacturing sector of the United States were collected for the first time in 1999. Using these data, we find strong links between labor productivity and the presence of computer networks. We find that average labor productivity is higher in plants with networks. Computer networks have a positive and significant effect on plant labor productivity after controlling for multiple factors of production and plant characteristics. Networks increase estimated labor productivity by roughly 5 percent, depending on model specification. Model specifications that account for endogenous computer networks also show a positive and significant relationship. Our work differs from others in several important aspects. First, ours is the first study that directly links the use of computer networks to labor productivity using plant-level data for the entire U.S. manufacturing sector. Second, we extend the existing model relating computers to productivity by including materials as an explicit factor input. Third, we test for possible endogeneity problems associated with the computer network variable.View Full Paper PDF
-
Working PaperProductivity Races I: Are Some Productivuty Measures Better Than Others?
January 1997
Working Paper Number:
CES-97-02
In this study we construct twelve different measures of productivity at the plant level and test which measures of productivity are most closely associated with direct measures of economic performance. We first examine how closely correlated these measures are with various measures of profits. We then evaluate the extent to which each productivity measure is associated with lower rates of plant closure and faster plant growth (growth in employment, output, and capital). All measures of productivity considered are credible in the sense that highly productive plants, regardless of measure, are clearly more profitable, less likely to close, and grow faster. Nevertheless, labor productivity and measures of total factor productivity that are based on regression estimates of production functions are better predictors of plant growth and survival than factor share-based measures of total factor productivity (TFP). Measures of productivity that are based on several years of data appear to outperform measures of productivity that are based solely on data from the most recent year.View Full Paper PDF
-
Working PaperPollution Abatement Costs, Regulation And Plant-Level Productivity
December 1994
Working Paper Number:
CES-94-14
We analyze the connection between productivity, pollution abatement expenditures, and other measures of environmental regulation for plants in three industries (paper, oil, and steel). We examine data from 1979 to 1990, considering both total factor productivity levels and growth rates. Plants with higher abatement cost levels have significantly lower productivity levels. The magnitude of the impact is somewhat larger than expected: $1 greater abatement costs appears to be associated with the equivalent of $1.74 in lower productivity for paper mills, $1.35 for oil refineries, and $3.28 for steel mills. However, these results apply only to variation across plants in productivity levels. Estimates looking at productivity variation within plants over time, or estimates using productivity growth rates show a smaller (and insignificant) relationship between abatement costs and productivity. Other measures of environmental regulation faced by the plants (compliance status, enforcement activity, and emissions) are not significantly related to productivity.View Full Paper PDF
-
Working PaperThe Effects Of Leveraged Buyouts On Productivity And Related Aspects Of Firm Behavior
July 1989
Working Paper Number:
CES-89-05
We investigate the economic effects of leveraged buyouts (LBOs) using large longitudinal establishment and firm-level Census Bureau data sets linked to a list of LBOs compiled from public data sources. About 5 percent, or 1100, of the manufacturing plants in the sample were involved in LBOs during 1981-1986. We find that plants involved in LBOs had significantly higher rates of total-factor productivity (TFP) growth than other plants in the same industry. The productivity impact of LBOs is much larger than our previous estimates of the productivity impact of ownership changes in general. Management buyouts appear to have a particularly strong positive effect on TFP. Labor and capital employed tend to decline (relative to the industry average) after the buyout, but at a slower rate than they did before the buyout. The ratio of nonproduction to production labor cost declines sharply, and production worker wage rates increase, following LBOs. LBOs are production-labor-using, nonproduction-labor-saving, organizational innovations. Plants involved in management buyouts (but not in other LBOs) are less likely to subsequently close than other plants. The average R&D- intensity of firms involved in LBOs increased at least as much from 1978 to 1986 as did the average R&D-intensity of all firms responding to the NSF/Census survey of industrial R&D.View Full Paper PDF