Papers Containing Keywords(s): 'information'
The following papers contain search terms that you selected. From the papers listed below, you can navigate to the PDF, the profile page for that working paper, or see all the working papers written by an author. You can also explore tags, keywords, and authors that occur frequently within these papers.
See Working Papers by Tag(s), Keywords(s), Author(s), or Search Text
Click here to search again
Frequently Occurring Concepts within this Search
Viewing papers 1 through 10 of 16
-
Working PaperSome Open Questions on Multiple-Source Extensions of Adaptive-Survey Design Concepts and Methods
February 2023
Working Paper Number:
CES-23-03
Adaptive survey design is a framework for making data-driven decisions about survey data collection operations. This paper discusses open questions related to the extension of adaptive principles and capabilities when capturing data from multiple data sources. Here, the concept of 'design' encompasses the focused allocation of resources required for the production of high-quality statistical information in a sustainable and cost-effective way. This conceptual framework leads to a discussion of six groups of issues including: (i) the goals for improvement through adaptation; (ii) the design features that are available for adaptation; (iii) the auxiliary data that may be available for informing adaptation; (iv) the decision rules that could guide adaptation; (v) the necessary systems to operationalize adaptation; and (vi) the quality, cost, and risk profiles of the proposed adaptations (and how to evaluate them). A multiple data source environment creates significant opportunities, but also introduces complexities that are a challenge in the production of high-quality statistical information.View Full Paper PDF
-
Working PaperUsing Small-Area Estimation (SAE) to Estimate Prevalence of Child Health Outcomes at the Census Regional-, State-, and County-Levels
November 2022
Working Paper Number:
CES-22-48
In this study, we implement small-area estimation to assess the prevalence of child health outcomes at the county, state, and regional levels, using national survey data.View Full Paper PDF
-
Working PaperWhy the Economics Profession Must Actively Participate in the Privacy Protection Debate
March 2019
Working Paper Number:
CES-19-09
When Google or the U.S. Census Bureau publish detailed statistics on browsing habits or neighborhood characteristics, some privacy is lost for everybody while supplying public information. To date, economists have not focused on the privacy loss inherent in data publication. In their stead, these issues have been advanced almost exclusively by computer scientists who are primarily interested in technical problems associated with protecting privacy. Economists should join the discussion, first, to determine where to balance privacy protection against data quality; a social choice problem. Furthermore, economists must ensure new privacy models preserve the validity of public data for economic research.View Full Paper PDF
-
Working PaperDisclosure Avoidance Techniques Used for the 1970 through 2010 Decennial Censuses of Population and Housing
November 2018
Working Paper Number:
CES-18-47
The U.S. Census Bureau conducts the decennial censuses under Title 13 of the U. S. Code with the Section 9 mandate to not 'use the information furnished under the provisions of this title for any purpose other than the statistical purposes for which it is supplied; or make any publication whereby the data furnished by any particular establishment or individual under this title can be identified; or permit anyone other than the sworn officers and employees of the Department or bureau or agency thereof to examine the individual reports (13 U.S.C. ' 9 (2007)).' The Census Bureau applies disclosure avoidance techniques to its publicly released statistical products in order to protect the confidentiality of its respondents and their data.View Full Paper PDF
-
Working PaperDisclosure Limitation and Confidentiality Protection in Linked Data
January 2018
Working Paper Number:
CES-18-07
Confidentiality protection for linked administrative data is a combination of access modalities and statistical disclosure limitation. We review traditional statistical disclosure limitation methods and newer methods based on synthetic data, input noise infusion and formal privacy. We discuss how these methods are integrated with access modalities by providing three detailed examples. The first example is the linkages in the Health and Retirement Study to Social Security Administration data. The second example is the linkage of the Survey of Income and Program Participation to administrative data from the Internal Revenue Service and the Social Security Administration. The third example is the Longitudinal Employer-Household Dynamics data, which links state unemployment insurance records for workers and firms to a wide variety of censuses and surveys at the U.S. Census Bureau. For examples, we discuss access modalities, disclosure limitation methods, the effectiveness of those methods, and the resulting analytical validity. The final sections discuss recent advances in access modalities for linked administrative data.View Full Paper PDF
-
Working PaperPublic-Use vs. Restricted-Use: An Analysis Using the American Community Survey
January 2017
Working Paper Number:
CES-17-12
Statistical agencies frequently publish microdata that have been altered to protect confidentiality. Such data retain utility for many types of broad analyses but can yield biased or Insufficiently precise results in others. Research access to de-identified versions of the restricted-use data with little or no alteration is often possible, albeit costly and time-consuming. We investigate the the advantages and disadvantages of public-use and restricted-use data from the American Community Survey (ACS) in constructing a wage index. The public-use data used were Public Use Microdata Samples, while the restricted-use data were accessed via a Federal Statistical Research Data Center. We discuss the advantages and disadvantages of each data source and compare estimated CWIs and standard errors at the state and labor market levels.View Full Paper PDF
-
Working PaperUsing Partially Synthetic Microdata to Protect Sensitive Cells in Business Statistics
February 2016
Working Paper Number:
CES-16-10
We describe and analyze a method that blends records from both observed and synthetic microdata into public-use tabulations on establishment statistics. The resulting tables use synthetic data only in potentially sensitive cells. We describe different algorithms, and present preliminary results when applied to the Census Bureau's Business Dynamics Statistics and Synthetic Longitudinal Business Database, highlighting accuracy and protection afforded by the method when compared to existing public-use tabulations (with suppressions).View Full Paper PDF
-
Working PaperMatching Addresses between Household Surveys and Commercial Data
July 2015
Working Paper Number:
carra-2015-04
Matching third-party data sources to household surveys can benefit household surveys in a number of ways, but the utility of these new data sources depends critically on our ability to link units between data sets. To understand this better, this report discusses potential modifications to the existing match process that could potentially improve our matches. While many changes to the matching procedure produce marginal improvements in match rates, substantial increases in match rates can only be achieved by relaxing the definition of a successful match. In the end, the results show that the most important factor determining the success of matching procedures is the quality and composition of the data sets being matched.View Full Paper PDF
-
Working PaperEXPANDING THE ROLE OF SYNTHETIC DATA AT THE U.S. CENSUS BUREAU
February 2014
Working Paper Number:
CES-14-10
National Statistical offices (NSOs) create official statistics from data collected from survey respondents, government administrative records and other sources. The raw source data is usually considered to be confidential. In the case of the U.S. Census Bureau, confidentiality of survey and administrative records microdata is mandated by statute, and this mandate to protect confidentiality is often at odds with the needs of users to extract as much information from the data as possible. Traditional disclosure protection techniques result in official data products that do not fully utilize the information content of the underlying microdata. Typically, these products take the form of simple aggregate tabulations. In a few cases anonymized public- use micro samples are made available, but these face a growing risk of re-identification by the increasing amounts of information about individuals and firms available in the public domain. One approach for overcoming these risks is to release products based on synthetic data where values are simulated from statistical models designed to mimic the (joint) distributions of the underlying microdata. We discuss re- cent Census Bureau work to develop and deploy such products. We discuss the benefits and challenges involved with extending the scope of synthetic data products in official statistics.View Full Paper PDF
-
Working PaperTowards Unrestricted Public Use Business Microdata: The Synthetic Longitudinal Business Database
February 2011
Working Paper Number:
CES-11-04
In most countries, national statistical agencies do not release establishment-level business microdata, because doing so represents too large a risk to establishments\' confidentiality. One approach with the potential for overcoming these risks is to release synthetic data; that is, the released establishment data are simulated from statistical models designed to mimic the distributions of the underlying real microdata. In this article, we describe an application of this strategy to create a public use file for the Longitudinal Business Database, an annual economic census of establishments in the United States comprising more than 20 million records dating back to 1976. The U.S. Bureau of the Census and the Internal Revenue Service recently approved the release of these synthetic microdata for public use, making the synthetic Longitudinal Business Database the first-ever business microdata set publicly released in the United States. We describe how we created the synthetic data, evaluated analytical validity, and assessed disclosure risk.View Full Paper PDF