-
U.S. Banks' Artificial Intelligence and Small Business Lending: Evidence from the Census Bureau's Annual Business Survey
February 2025
Working Paper Number:
CES-25-07
Utilizing confidential microdata from the Census Bureau's new technology survey (technology module of the Annual Business Survey), we shed light on U.S. banks' use of artificial intelligence (AI) and its effect on their small business lending. We find that the percentage of banks using AI increases from 14% in 2017 to 43% in 2019. Linking banks' AI use to their small business lending, we find that banks with greater AI usage lend significantly more to distant borrowers, about whom they have less soft information. Using an instrumental variable based on banks' proximity to AI vendors, we show that AI's effect is likely causal. In contrast, we do not find similar effects for cloud systems, other types of software, or hardware surveyed by Census, highlighting AI's uniqueness. Moreover, AI's effect on distant lending is more pronounced in poorer areas and areas with less bank presence. Last, we find that banks with greater AI usage experience lower default rates among distant borrowers and charge these borrowers lower interest rates, suggesting that AI helps banks identify creditworthy borrowers at loan origination. Overall, our evidence suggests that AI helps banks reduce information asymmetry with borrowers, thereby enabling them to extend credit over greater distances.
View Full
Paper PDF
-
Measuring the Business Dynamics of Firms that Received Pandemic Relief Funding: Findings from a New Experimental BDS Data Product
January 2025
Working Paper Number:
CES-25-05
This paper describes a new experimental data product from the U.S. Census Bureau's Center for Economic Studies: the Business Dynamics Statistics (BDS) of firms that received Small Business Administration (SBA) pandemic funding. This new product, BDS-SBA COVID, expands the set of currently published BDS tables by linking loan-level program participation data from SBA to internal business microdata at the U.S. Census Bureau. The linked programs include the Paycheck Protection Program (PPP), COVID Economic Injury Disaster Loans (COVID-EIDL), the Restaurant Revitalization Fund (RRF), and Shuttered Venue Operators Grants (SVOG). Using these linked data, we tabulate annual firm and establishment counts, measures of job creation and destruction, and establishment entry and exit for recipients and non-recipients of program funds in 2020-2021. We further stratify the tables by timing of loan receipt and loan size, and business characteristics including geography, industry sector, firm size, and firm age. We find that for the youngest firms that received PPP, the timing of receipt mattered. Receiving an early loan correlated with a lower job destruction rate compared to non-recipients and businesses that received a later loan. For the smallest firms, simply participating in PPP was associated with lower employment loss. The timing of PPP receipt was also related to establishment exit rates. For businesses of nearly all ages, those that received an early loan exited at a lower rate in 2022 than later loan recipients.
View Full
Paper PDF
-
The Metamorphosis of Women Business Owners: A Focus on Age
November 2024
Working Paper Number:
CES-24-71
Due to their growth, increasing performance, and significant contributions to the United States economy, women-owned businesses have spurred the interest of policymakers, researchers, and advocacy groups. Using various data products from the Census Bureau's Business Demographics Program, this study examines how women business ownership changes over time by age. We find that young owners experienced growth in ownership between 2012 and 2020 and that younger employer businesses were mostly owned by women under the age of 35 in 2021. We show that among women aged 45 to 54 and those aged 55 to 64 ownership rates declined 5.5% and 4.8% between 2012 and 2020, implying an acceleration in the drop out of entrepreneurship for mid to late career age groups. We also show that older owners operate most businesses in capital-intensive industries, had more prior businesses, and higher rates of selling their most recently started businesses. Finally, we find that age groups often characterized as childbearing ages found balancing work and family as key drivers of their decision to start a business.
View Full
Paper PDF
-
Industry Shakeouts after an Innovation Breakthrough
November 2024
Working Paper Number:
CES-24-70
Conventional wisdom suggests that after a technological breakthrough, the number of active firms first surges, and then sharply declines, in what is known as a 'shakeout'. This paper challenges that notion with new empirical evidence from across the U.S. economy, revealing that shakeouts are the exception, not the rule. I develop a statistical strategy to detect breakthroughs by isolating sustained anomalies in net firm entry rates, offering a robust alternative to narrative-driven approaches that can be applied to all industries. The results of this strategy, which reliably align with well-documented breakthroughs and remain consistent across various validation tests, uncover a novel trend: the number of entry-driven breakthroughs has been declining over time. The variability and frequent absence of shakeouts across breakthrough industries are consistent with breakthroughs primarily occurring in industries with low returns to scale and with modest learning curves, shifting the narrative on the nature of innovation over the past forty years in the U.S.
View Full
Paper PDF
-
The Role of R&D Factors in Economic Growth
November 2024
Working Paper Number:
CES-24-69
This paper studies factor usage in the R&D sector. I show that the usage of non-labor inputs in R&D is significant, and that their usage has grown much more rapidly than the R&D workforce. Using a standard growth decomposition applied to the aggregate idea production function, I estimate that at least 77% of idea growth since the early 1960s can be attributed to the growth of non-labor inputs in R&D. I demonstrate that a similar pattern would hold on the balanced growth path of a standard semi-endogenous growth model, and thus that the decomposition is not simply a by-product of rising research intensity. I then show that combining long-running differences in factor growth rates with non-unitary elasticities of substitution in idea production leads to a slowdown in idea growth whenever labor and capital are complementary. I conclude by estimating this elasticity of substitution and demonstrate that the results favor complimentarities.
View Full
Paper PDF
-
Competition, Firm Innovation, and Growth under Imperfect Technology Spillovers
July 2024
Working Paper Number:
CES-24-40
We study how friction in learning others' technology, termed 'imperfect technology spillovers,' incentivizes firms to use different types of innovation and impacts the implications of competition through changes in innovation composition. We build an endogenous growth model in which multi-product firms enhance their products via internal innovation and enter new product markets through external innovation. When learning others' technology takes time due to this friction, increased competitive pressure leads firms with technological advantages to intensify internal innovation to protect their markets, thereby reducing others' external innovation. Using the U.S. administrative firm-level data, we provide regression results supporting the model predictions. Our findings highlight the importance of strategic firm innovation choices and changes in their composition in shaping the aggregate implications of competition.
View Full
Paper PDF
-
Productivity Dispersion and Structural Change in Retail Trade
December 2023
Working Paper Number:
CES-23-60R
The retail sector has changed from a sector full of small firms to one dominated by large, national firms. We study how this transformation has impacted productivity levels, growth, and dispersion between 1987 and 2017. We describe this transformation using three overlapping phases: expansion (1980s and 1990s), consolidation (2000s), and stagnation (2010s). We document five findings that help us understand these phases. First, productivity growth was high during the consolidation phase but has fallen more recently. Second, entering establishments drove productivity growth during the expansion phase, but continuing establishments have increased in importance more recently. Third, national chains have more productive establishments than single-unit firms on average, but some single-unit establishments are highly productive. Fourth, productivity dispersion is significant and increasing over time. Finally, more productive firms pay higher wages and grow more quickly. Together, these results suggest that the increasing importance of large national retail firms has been an important driver of productivity and wage growth in the retail sector.
View Full
Paper PDF
-
Business Dynamics Statistics for Single-Unit Firms
December 2022
Working Paper Number:
CES-22-57
The Business Dynamics Statistics of Single Unit Firms (BDS-SU) is an experimental data product that provides information on employment and payroll dynamics for each quarter of the year at businesses that operate in one physical location. This paper describes the creation of the data tables and the value they add to the existing Business Dynamics Statistics (BDS) product. We then present some analysis of the published statistics to provide context for the numbers and demonstrate how they can be used to understand both national and local business conditions, with a particular focus on 2020 and the recession induced by the COVID-19 pandemic. We next examine how firms fared in this recession compared to the Great Recession that began in the fourth quarter of 2007. We also consider the heterogenous impact of the pandemic on various industries and areas of the country, showing which types of businesses in which locations were particularly hard hit. We examine business exit rates in some detail and consider why different metro areas experienced the pandemic in different ways. We also consider entry rates and look for evidence of a surge in new businesses as seen in other data sources. We finish by providing a preview of on-going research to match the BDS to worker demographics and show statistics on the relationship between the characteristics of the firm's workers and outcomes such as firm exit and net job creation.
View Full
Paper PDF
-
Multinational Firms in the U.S. Economy: Insights from Newly Integrated Microdata
September 2022
Working Paper Number:
CES-22-39
This paper describes the construction of two confidential crosswalk files enabling a comprehensive identification of multinational rms in the U.S. economy. The effort combines firm-level surveys on direct investment conducted by the U.S. Bureau of Economic Analysis (BEA) and the U.S. Census Bureau's Business Register (BR) spanning the universe of employer businesses from 1997 to 2017. First, the parent crosswalk links BEA firm-level surveys on U.S. direct investment abroad and the BR. Second, the affiliate crosswalk links BEA firm-level surveys on foreign direct investment in the United States and the BR. Using these newly available links, we distinguish between U.S.- and foreign-owned multinational firms and describe their prevalence and economic activities in the national economy, by sector, and by geography.
View Full
Paper PDF
-
Automation and the Workforce: A Firm-Level View from the 2019 Annual Business Survey
April 2022
Authors:
John Haltiwanger,
Lucia Foster,
Emin Dinlersoz,
Nikolas Zolas,
Daron Acemoglu,
Catherine Buffington,
Nathan Goldschlag,
Zachary Kroff,
David Beede,
Gary Anderson,
Eric Childress,
Pascual Restrepo
Working Paper Number:
CES-22-12R
This paper describes the adoption of automation technologies by US firms across all economic sectors by leveraging a new module introduced in the 2019 Annual Business Survey, conducted by the US Census Bureau in partnership with the National Center for Science and Engineering Statistics (NCSES). The module collects data from over 300,000 firms on the use of five advanced technologies: AI, robotics, dedicated equipment, specialized software, and cloud computing. The adoption of these technologies remains low (especially for AI and robotics), varies substantially across industries, and concentrates on large and young firms. However, because larger firms are much more likely to adopt them, 12-64% of US workers and 22-72% of manufacturing workers are exposed to these technologies. Firms report a variety of motivations for adoption, including automating tasks previously performed by labor. Consistent with the use of these technologies for automation, adopters have higher labor productivity and lower labor shares. In particular, the use of these technologies is associated with a 11.4% higher labor productivity, which accounts for 20'30% of the difference in labor productivity between large firms and the median firm in an industry. Adopters report that these technologies raised skill requirements and led to greater demand for skilled labor, but brought limited or ambiguous effects to their employment levels.
View Full
Paper PDF