CREAT: Census Research Exploration and Analysis Tool

Industry Shakeouts after an Innovation Breakthrough

November 2024

Written by: Xiaoyang Li

Working Paper Number:

CES-24-70

Abstract

Conventional wisdom suggests that after a technological breakthrough, the number of active firms first surges, and then sharply declines, in what is known as a 'shakeout'. This paper challenges that notion with new empirical evidence from across the U.S. economy, revealing that shakeouts are the exception, not the rule. I develop a statistical strategy to detect breakthroughs by isolating sustained anomalies in net firm entry rates, offering a robust alternative to narrative-driven approaches that can be applied to all industries. The results of this strategy, which reliably align with well-documented breakthroughs and remain consistent across various validation tests, uncover a novel trend: the number of entry-driven breakthroughs has been declining over time. The variability and frequent absence of shakeouts across breakthrough industries are consistent with breakthroughs primarily occurring in industries with low returns to scale and with modest learning curves, shifting the narrative on the nature of innovation over the past forty years in the U.S.

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
market, production, enterprise, industrial, company, growth, financial, finance, sector, trend, innovation, impact, sectoral

Tags Tags are automatically generated using a pretrained language model from spaCy, which excels at several tasks, including entity tagging.

The model is able to label words and phrases by part-of-speech, including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are identified to contain references to specific institutions, datasets, and other organizations.
:
Center for Economic Studies, IBM, Insurance Information Institute, Longitudinal Business Database, North American Industry Classification System, Census Bureau Disclosure Review Board, Business Dynamics Statistics, Federal Statistical Research Data Center

Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with 🔥 are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'Industry Shakeouts after an Innovation Breakthrough' are listed below in order of similarity.