-
The Role of R&D Factors in Economic Growth
November 2024
Working Paper Number:
CES-24-69
This paper studies factor usage in the R&D sector. I show that the usage of non-labor inputs in R&D is significant, and that their usage has grown much more rapidly than the R&D workforce. Using a standard growth decomposition applied to the aggregate idea production function, I estimate that at least 77% of idea growth since the early 1960s can be attributed to the growth of non-labor inputs in R&D. I demonstrate that a similar pattern would hold on the balanced growth path of a standard semi-endogenous growth model, and thus that the decomposition is not simply a by-product of rising research intensity. I then show that combining long-running differences in factor growth rates with non-unitary elasticities of substitution in idea production leads to a slowdown in idea growth whenever labor and capital are complementary. I conclude by estimating this elasticity of substitution and demonstrate that the results favor complimentarities.
View Full
Paper PDF
-
Collaborative Micro-productivity Project: Establishment-Level Productivity Dataset, 1972-2020
December 2023
Working Paper Number:
CES-23-65
We describe the process for building the Collaborative Micro-productivity Project (CMP) microdata and calculating establishment-level productivity numbers. The documentation is for version 7 and the data cover the years 1972-2020. These data have been used in numerous research papers and are used to create the experimental public-use data product Dispersion Statistics on Productivity (DiSP).
View Full
Paper PDF
-
Decomposing Aggregate Productivity
July 2022
Working Paper Number:
CES-22-25
In this note, we evaluate the sensitivity of commonly-used decompositions for aggregate productivity. Our analysis spans the universe of U.S. manufacturers from 1977 to 2012 and we find that, even holding the data and form of the production function fixed, results on aggregate productivity are extremely sensitive to how productivity at the firm level is measured. Even qualitative statements about the levels of aggregate productivity and the sign of the covariance between productivity and size are highly dependent on how production function parameters are estimated. Despite these difficulties, we uncover some consistent facts about productivity growth: (1) labor productivity is consistently higher and less error-prone than measures of multi-factor productivity; (2) most productivity growth comes from growth within firms, rather than from reallocation across firms; (3) what growth does come from reallocation appears to be driven by net entry, primarily from the exit of relatively less-productive firms.
View Full
Paper PDF
-
Productivity Dispersion, Entry, and Growth in U.S. Manufacturing Industries
August 2021
Working Paper Number:
CES-21-21
Within-industry productivity dispersion is pervasive and exhibits substantial variation across countries, industries, and time. We build on prior research that explores the hypothesis that periods of innovation are initially associated with a surge in business start-ups, followed by increased experimentation that leads to rising dispersion potentially with declining aggregate productivity growth, and then a shakeout process that results in higher productivity growth and declining productivity dispersion. Using novel detailed industry-level data on total factor productivity and labor productivity dispersion from the Dispersion Statistics on Productivity along with novel measures of entry rates from the Business Dynamics Statistics and productivity growth data from the Bureau of Labor Statistics for U.S. manufacturing industries, we find support for this hypothesis, especially for the high-tech industries.
View Full
Paper PDF
-
Automation, Labor Share, and Productivity:
Plant-Level Evidence from U.S. Manufacturing
September 2018
Working Paper Number:
CES-18-39
This paper provides new evidence on the plant-level relationship between automation, labor and capital usage, and productivity. The evidence, based on the U.S. Census Bureau's Survey of Manufacturing Technology, indicates that more automated establishments have lower production labor share and higher capital share, and a smaller fraction of workers in production who receive higher wages. These establishments also have higher labor productivity and experience larger long-term labor share declines. The relationship between automation and relative factor usage is modelled using a CES production function with endogenous technology choice. This deviation from the standard Cobb-Douglas assumption is necessary if the within-industry differences in the capital-labor ratio are determined by relative input price differences. The CES-based total factor productivity estimates are significantly different from the ones derived under Cobb-Douglas production and positively related to automation. The results, taken together with earlier findings of the productivity literature, suggest that the adoption of automation may be one mechanism associated with the rise of superstar firms.
View Full
Paper PDF
-
Macro and Micro Dynamics of Productivity: From Devilish Details to Insights
January 2017
Working Paper Number:
CES-17-41R
Researchers use a variety of methods to estimate total factor productivity (TFP) at the firm level and, while these may seem broadly equivalent, how the resulting measures relate to the TFP concept in theoretical models depends on the assumptions about the environment in which firms operate. Interpreting these measures and drawing insights based upon their characteristics thus must take into account these conceptual differences. Absent data on prices and quantities, most methods yield 'revenue productivity' measures. We focus on two broad classes of revenue productivity measures in our examination of the relationship between measured and conceptual TFP (TFPQ). The first measure has been increasingly used as a measure of idiosyncratic distortions and to assess the degree of misallocation. The second measure is, under standard assumptions, a function of funda-
mentals (e.g., TFPQ). Using plant-level U.S. manufacturing data, we find these alternative
measures are (i) highly correlated; (ii) exhibit similar dispersion; and (iii) have similar relationships with growth and survival. These findings raise questions about interpreting the first measure as a measure of idiosyncratic distortions. We also explore the sensitivity of estimates of the contribution of reallocation to aggregate productivity growth to these alternative approaches. We use recently developed structural decompositions of aggregate productivity growth that depend critically on estimates of output versus revenue elasticities. We find alternative approaches all yield a significant contribution of reallocation to
productivity growth (although the quantitative contribution varies across approaches).
View Full
Paper PDF
-
Are We Undercounting Reallocation's Contribution to Growth?
January 2013
Working Paper Number:
CES-13-55R
There has been a strong surge in aggregate productivity growth in India since 1990, following
significant economic reforms. Three recent studies have used two distinct methodologies to decompose the sources of growth, and all conclude that it has been driven by within-plant increases in technical efficiency and not between-plant reallocation of inputs. Given the nature of the reforms, where many barriers to input reallocation were removed, this finding has surprised researchers and been dubbed 'India's Mysterious Manufacturing Miracle.' In this paper, we show that the methodologies used may artificially understate the extent of reallocation. One approach, using growth in value added, counts all reallocation growth arising from the movement of intermediate inputs as technical efficiency growth. The second approach, using the Olley-Pakes decomposition, uses estimates of plant-level total factor productivity (TFP) as a proxy for the marginal product of inputs. However, in equilibrium, TFP and the marginal product of inputs are unrelated. Using microdata on manufacturing from five countries ' India, the U.S., Chile, Colombia, and Slovenia ' we show that both approaches significantly understate the true
role of reallocation in economic growth. In particular, reallocation of materials is responsible for over half of aggregate Indian manufacturing productivity growth since 2000, substantially larger than either the contribution of primary inputs or the change in the covariance of productivity and size.
View Full
Paper PDF
-
The Impact of Plant-Level Resource Reallocations and Technical Progress on U.S. Macroeconomic Growth
December 2009
Working Paper Number:
CES-09-43
We build up from the plant level an "aggregate(d) Solow residual" by estimating every U.S. manufacturing plant's contribution to the change in aggregate final demand between 1976 and 1996. We decompose these contributions into plant-level resource reallocations and plant-level technical efficiency changes. We allow for 459 different production technologies, one for each 4- digit SIC code. Our framework uses the Petrin and Levinsohn (2008) definition of aggregate productivity growth, which aggregates plant-level changes to changes in aggregate final demand in the presence of imperfect competition and other distortions and frictions. On average, we find that aggregate reallocation made a larger contribution than aggregate technical efficiency growth. Our estimates of the contribution of reallocation range from 1:7% to2:1% per year, while our estimates of the average contribution of aggregate technical efficiency growth range from 0:2% to 0:6% per year. In terms of cyclicality, the aggregate technical efficiency component has a standard deviation that is roughly 50% to 100% larger than that of aggregate total reallocation, pointing to an important role for technical efficiency in macroeconomic fluctuations. Aggregate reallocation is negative in only 3 of the 20 years of our sample, suggesting that the movement of inputs to more highly valued activities on average plays a stabilizing role in manufacturing growth.
View Full
Paper PDF
-
Misallocation and Manufacturing TFP in China and India
February 2009
Working Paper Number:
CES-09-04
Resource misallocation can lower aggregate total factor productivity (TFP). We use micro data on manufacturing establishments to quantify the potential extent of misallocation in China and India compared to the U.S. Compared to the U.S., we measure sizable gaps in marginal products of labor and capital across plants within narrowly-defined industries in China and India. When capital and labor are hypothetically reallocated to equalize marginal products to the extent observed in the U.S., we calculate manufacturing TFP gains of 30-50% in China and 40-60% in India.
View Full
Paper PDF
-
The Importance of Reallocations in Cyclical Productivity and Returns to Scale: Evidence from Plant-Level Data
March 2007
Working Paper Number:
CES-07-05
This paper provides new evidence that estimates based on aggregate data will understate the true procyclicality of total factor productivity. I examine plant-level data and show that some industries experience countercyclical reallocations of output shares among firms at different points in the business cycle, so that during recessions, less productive firms produce less of the total output, but during expansions they produce more. These reallocations cause overall productivity to rise during recessions, and do not reflect the actual path of productivity of a representative firm over the course of the business cycle. Such an effect (sometimes called the cleansing effect of recessions) may also bias aggregate estimates of returns to scale and help explain why decreasing returns to scale are found at the industry-level data.
View Full
Paper PDF