CREAT: Census Research Exploration and Analysis Tool

Papers written by Author(s): 'Erik Brynjolfsson'

The following papers contain search terms that you selected. From the papers listed below, you can navigate to the PDF, the profile page for that working paper, or see all the working papers written by an author. You can also explore tags, keywords, and authors that occur frequently within these papers.
Click here to search again

Frequently Occurring Concepts within this Search

Viewing papers 1 through 7 of 7


  • Working Paper

    The Rise of Industrial AI in America: Microfoundations of the Productivity J-curve(s)

    April 2025

    Working Paper Number:

    CES-25-27

    We examine the prevalence and productivity dynamics of artificial intelligence (AI) in American manufacturing. Working with the Census Bureau to collect detailed large-scale data for 2017 and 2021, we focus on AI-related technologies with industrial applications. We find causal evidence of J-curve-shaped returns, where short-term performance losses precede longer-term gains. Consistent with costly adjustment taking place within core production processes, industrial AI use increases work-in-progress inventory, investment in industrial robots, and labor shedding, while harming productivity and profitability in the short run. These losses are unevenly distributed, concentrating among older businesses while being mitigated by growth-oriented business strategies and within-firm spillovers. Dynamics, however, matter: earlier (pre-2017) adopters exhibit stronger growth over time, conditional on survival. Notably, among older establishments, abandonment of structured production-management practices accounts for roughly one-third of these losses, revealing a specific channel through which intangible factors shape AI's impact. Taken together, these results provide novel evidence on the microfoundations of technology J-curves, identifying mechanisms and illuminating how and why they differ across firm types. These findings extend our understanding of modern General Purpose Technologies, explaining why their economic impact'exemplified here by AI'may initially disappoint, particularly in contexts dominated by older, established firms.
    View Full Paper PDF
  • Working Paper

    AI Adoption in America: Who, What, and Where

    September 2023

    Working Paper Number:

    CES-23-48R

    We study the early adoption and diffusion of five AI-related technologies (automated-guided vehicles, machine learning, machine vision, natural language processing, and voice recognition) as documented in the 2018 Annual Business Survey of 850,000 firms across the United States. We find that fewer than 6% of firms used any of the AI-related technologies we measure, though most very large firms reported at least some AI use. Weighted by employment, average adoption was just over 18%. AI use in production, while varying considerably by industry, nevertheless was found in every sector of the economy and clustered with emerging technologies such as cloud computing and robotics. Among dynamic young firms, AI use was highest alongside more educated, more-experienced, and younger owners, including owners motivated by bringing new ideas to market or helping the community. AI adoption was also more common alongside indicators of high-growth entrepreneurship, including venture capital funding, recent product and process innovation, and growth-oriented business strategies. Early adoption was far from evenly distributed: a handful of 'superstar' cities and emerging hubs led startups' adoption of AI. These patterns of early AI use foreshadow economic and social impacts far beyond this limited initial diffusion, with the possibility of a growing 'AI divide' if early patterns persist.
    View Full Paper PDF
  • Working Paper

    The Characteristics and Geographic Distribution of Robot Hubs in U.S. Manufacturing Establishments

    March 2023

    Working Paper Number:

    CES-23-14

    We use data from the Annual Survey of Manufactures to study the characteristics and geography of investments in robots across U.S. manufacturing establishments. We find that robotics adoption and robot intensity (the number of robots per employee) is much more strongly related to establishment size than age. We find that establishments that report having robotics have higher capital expenditures, including higher information technology (IT) capital expenditures. Also, establishments are more likely to have robotics if other establishments in the same Core-Based Statistical Area (CBSA) and industry also report having robotics. The distribution of robots is highly skewed across establishments' locations. Some locations, which we call Robot Hubs, have far more robots than one would expect even after accounting for industry and manufacturing employment. We characterize these Robot Hubs along several industry, demographic, and institutional dimensions. The presence of robot integrators and higher levels of union membership are positively correlated with being a Robot Hub.
    View Full Paper PDF
  • Working Paper

    Advanced Technologies Adoption and Use by U.S. Firms: Evidence from the Annual Business Survey

    December 2020

    Working Paper Number:

    CES-20-40

    We introduce a new survey module intended to complement and expand research on the causes and consequences of advanced technology adoption. The 2018 Annual Business Survey (ABS), conducted by the Census Bureau in partnership with the National Center for Science and Engineering Statistics (NCSES), provides comprehensive and timely information on the diffusion among U.S. firms of advanced technologies including artificial intelligence (AI), cloud computing, robotics, and the digitization of business information. The 2018 ABS is a large, nationally representative sample of over 850,000 firms covering all private, nonfarm sectors of the economy. We describe the motivation for and development of the technology module in the ABS, as well as provide a first look at technology adoption and use patterns across firms and sectors. We find that digitization is quite widespread, as is some use of cloud computing. In contrast, advanced technology adoption is rare and generally skewed towards larger and older firms. Adoption patterns are consistent with a hierarchy of increasing technological sophistication, in which most firms that adopt AI or other advanced business technologies also use the other, more widely diffused technologies. Finally, while few firms are at the technology frontier, they tend to be large so technology exposure of the average worker is significantly higher. This new data will be available to qualified researchers on approved projects in the Federal Statistical Research Data Center network.
    View Full Paper PDF
  • Working Paper

    What Drives Differences in Management?

    January 2017

    Working Paper Number:

    CES-17-32

    Partnering with the Census we implement a new survey of 'structured' management practices in 32,000 US manufacturing plants. We find an enormous dispersion of management practices across plants, with 40% of this variation across plants within the same firm. This management variation accounts for about a fifth of the spread of productivity, a similar fraction as that accounted for by R&D and twice as much as explained by IT. We find evidence for four 'drivers' of management: competition, business environment, learning spillovers and human capital. Collectively, these drivers account for about a third of the dispersion of structured management practices.
    View Full Paper PDF
  • Working Paper

    Data in Action: Data-Driven Decision Making in U.S. Manufacturing

    January 2016

    Working Paper Number:

    CES-16-06

    Manufacturing in America has become significantly more data-intensive. We investigate the adoption, performance effects and organizational complementarities of data-driven decision making (DDD) in the U.S. Using data collected by the Census Bureau for 2005 and 2010, we observe the extent to which manufacturing firms track and use data to guide decision making, as well as their investments in information technology (IT) and the use of other structured management practices. Examining a representative sample of over 18,000 plans, we find that adoption of DDD is earlier and more prevalent among larger, older plants belonging to multi-unit firms. Smaller single-establishment firms adopt later but have a higher correlation with performance than similar non-adopters. Using a fixed-effects estimator, we find the average value-added for later DDD adopters to be 3% greater than non-adopters, controlling for other inputs to production. This effect is distinct from that associated with IT and other structured management practices and is concentrated among single-unit firms. Performance improves after plants adopt DDD, but not before ' consistent with a causal relationship. However, DDD-related performance differentials decrease over time for early and late adopters, consistent with firm learning and development of organizational complementarities. Formal complementarity tests suggest that DDD and high levels of IT capital reinforce each other, as do DDD and skilled workers. For some industries, the benefits of DDD adoption appear to be greater for plants that delegate some decision making to frontline workers.
    View Full Paper PDF
  • Working Paper

    Management in America

    January 2013

    Working Paper Number:

    CES-13-01

    The Census Bureau recently conducted a survey of management practices in over 30,000 plants across the US, the first large-scale survey of management in America. Analyzing these data reveals several striking results. First, more structured management practices are tightly linked to better performance: establishments adopting more structured practices for performance monitoring, target setting and incentives enjoy greater productivity and profitability, higher rates of innovation and faster employment growth. Second, there is a substantial dispersion of management practices across the establishments. We find that 18% of establishments have adopted at least 75% of these more structured management practices, while 27% of establishments adopted less than 50% of these. Third, more structured management practices are more likely to be found in establishments that export, who are larger (or are part of bigger firms), and have more educated employees. Establishments in the South and Midwest have more structured practices on average than those in the Northeast and West. Finally, we find adoption of structured management practices has increased between 2005 and 2010 for surviving establishments, particularly for those practices involving data collection and analysis.
    View Full Paper PDF