CREAT: Census Research Exploration and Analysis Tool

The Rise of Industrial AI in America: Microfoundations of the Productivity J-curve(s)

April 2025

Working Paper Number:

CES-25-27

Abstract

We examine the prevalence and productivity dynamics of artificial intelligence (AI) in American manufacturing. Working with the Census Bureau to collect detailed large-scale data for 2017 and 2021, we focus on AI-related technologies with industrial applications. We find causal evidence of J-curve-shaped returns, where short-term performance losses precede longer-term gains. Consistent with costly adjustment taking place within core production processes, industrial AI use increases work-in-progress inventory, investment in industrial robots, and labor shedding, while harming productivity and profitability in the short run. These losses are unevenly distributed, concentrating among older businesses while being mitigated by growth-oriented business strategies and within-firm spillovers. Dynamics, however, matter: earlier (pre-2017) adopters exhibit stronger growth over time, conditional on survival. Notably, among older establishments, abandonment of structured production-management practices accounts for roughly one-third of these losses, revealing a specific channel through which intangible factors shape AI's impact. Taken together, these results provide novel evidence on the microfoundations of technology J-curves, identifying mechanisms and illuminating how and why they differ across firm types. These findings extend our understanding of modern General Purpose Technologies, explaining why their economic impact'exemplified here by AI'may initially disappoint, particularly in contexts dominated by older, established firms.

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
estimation, production, economist, macroeconomic, estimating, manufacturing, industrial, company, growth, technological, invention, manufacturer, entrepreneurship, productivity impacts, growth productivity, factory, innovation, rates productivity, innovate, spillover, wages productivity, productivity dynamics, innovating

Tags Tags are automatically generated using a pretrained language model from spaCy, which excels at several tasks, including entity tagging.

The model is able to label words and phrases by part-of-speech, including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are identified to contain references to specific institutions, datasets, and other organizations.
:
Annual Survey of Manufactures, Internal Revenue Service, National Science Foundation, Ordinary Least Squares, Total Factor Productivity, Office of Management and Budget, Longitudinal Business Database, Census of Manufacturing Firms, Economic Census, North American Industry Classification System, Census Bureau Disclosure Review Board, Annual Business Survey, Value Added

Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with 🔥 are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'The Rise of Industrial AI in America: Microfoundations of the Productivity J-curve(s)' are listed below in order of similarity.