-
Tapping Business and Household Surveys to Sharpen Our View of Work from Home
June 2025
Working Paper Number:
CES-25-36
Timely business-level measures of work from home (WFH) are scarce for the U.S. economy. We review prior survey-based efforts to quantify the incidence and character of WFH and describe new questions that we developed and fielded for the Business Trends and Outlook Survey (BTOS). Drawing on more than 150,000 firm-level responses to the BTOS, we obtain four main findings. First, nearly a third of businesses have employees who work from home, with tremendous variation across sectors. The share of businesses with WFH employees is nearly ten times larger in the Information sector than in Accommodation and Food Services. Second, employees work from home about 1 day per week, on average, and businesses expect similar WFH levels in five years. Third, feasibility aside, businesses' largest concern with WFH relates to productivity. Seven percent of businesses find that onsite work is more productive, while two percent find that WFH is more productive. Fourth, there is a low level of tracking and monitoring of WFH activities, with 70% of firms reporting they do not track employee days in the office and 75% reporting they do not monitor employees when they work from home. These lessons serve as a starting point for enhancing WFH-related content in the American Community Survey and other household surveys.
View Full
Paper PDF
-
The Rise of Industrial AI in America: Microfoundations of the Productivity J-curve(s)
April 2025
Working Paper Number:
CES-25-27
We examine the prevalence and productivity dynamics of artificial intelligence (AI) in American manufacturing. Working with the Census Bureau to collect detailed large-scale data for 2017 and 2021, we focus on AI-related technologies with industrial applications. We find causal evidence of J-curve-shaped returns, where short-term performance losses precede longer-term gains. Consistent with costly adjustment taking place within core production processes, industrial AI use increases work-in-progress inventory, investment in industrial robots, and labor shedding, while harming productivity and profitability in the short run. These losses are unevenly distributed, concentrating among older businesses while being mitigated by growth-oriented business strategies and within-firm spillovers. Dynamics, however, matter: earlier (pre-2017) adopters exhibit stronger growth over time, conditional on survival. Notably, among older establishments, abandonment of structured production-management practices accounts for roughly one-third of these losses, revealing a specific channel through which intangible factors shape AI's impact. Taken together, these results provide novel evidence on the microfoundations of technology J-curves, identifying mechanisms and illuminating how and why they differ across firm types. These findings extend our understanding of modern General Purpose Technologies, explaining why their economic impact'exemplified here by AI'may initially disappoint, particularly in contexts dominated by older, established firms.
View Full
Paper PDF
-
Startup Dynamics: Transitioning from Nonemployer Firms to Employer Firms, Survival, and Job Creation
April 2025
Working Paper Number:
CES-25-26
Understanding the dynamics of startup businesses' growth, exit, and survival is crucial for fostering entrepreneurship. Among the nearly 30 million registered businesses in the United States, fewer than six million have employees beyond the business owners. This research addresses the gap in understanding which companies transition to employer businesses and the mechanisms behind this process. Job creation remains a critical concern for policymakers, researchers, and advocacy groups. This study aims to illuminate the transition from non-employer businesses to employer businesses and explore job creation by new startups. Leveraging newly available microdata from the U.S. Census Bureau, we seek to gain deeper insights into firm survival, job creation by startups, and the transition from non-employer to employer status.
View Full
Paper PDF
-
U.S. Banks' Artificial Intelligence and Small Business Lending: Evidence from the Census Bureau's Annual Business Survey
February 2025
Working Paper Number:
CES-25-07
Utilizing confidential microdata from the Census Bureau's new technology survey (technology module of the Annual Business Survey), we shed light on U.S. banks' use of artificial intelligence (AI) and its effect on their small business lending. We find that the percentage of banks using AI increases from 14% in 2017 to 43% in 2019. Linking banks' AI use to their small business lending, we find that banks with greater AI usage lend significantly more to distant borrowers, about whom they have less soft information. Using an instrumental variable based on banks' proximity to AI vendors, we show that AI's effect is likely causal. In contrast, we do not find similar effects for cloud systems, other types of software, or hardware surveyed by Census, highlighting AI's uniqueness. Moreover, AI's effect on distant lending is more pronounced in poorer areas and areas with less bank presence. Last, we find that banks with greater AI usage experience lower default rates among distant borrowers and charge these borrowers lower interest rates, suggesting that AI helps banks identify creditworthy borrowers at loan origination. Overall, our evidence suggests that AI helps banks reduce information asymmetry with borrowers, thereby enabling them to extend credit over greater distances.
View Full
Paper PDF
-
Financing, Ownership, and Performance: A Novel, Longitudinal Firm-Level Database
December 2024
Working Paper Number:
CES-24-73
The Census Bureau's Longitudinal Business Database (LBD) underpins many studies of firm-level behavior. It tracks longitudinally all employers in the nonfarm private sector but lacks information about business financing and owner characteristics. We address this shortcoming by linking LBD observations to firm-level data drawn from several large Census Bureau surveys. The resulting Longitudinal Employer, Owner, and Financing (LEOF) database contains more than 3 million observations at the firm-year level with information about start-up financing, current financing, owner demographics, ownership structure, profitability, and owner aspirations ' all linked to annual firm-level employment data since the firm hired its first employee. Using the LEOF database, we document trends in owner demographics and financing patterns and investigate how these business characteristics relate to firm-level employment outcomes.
View Full
Paper PDF
-
The Metamorphosis of Women Business Owners: A Focus on Age
November 2024
Working Paper Number:
CES-24-71
Due to their growth, increasing performance, and significant contributions to the United States economy, women-owned businesses have spurred the interest of policymakers, researchers, and advocacy groups. Using various data products from the Census Bureau's Business Demographics Program, this study examines how women business ownership changes over time by age. We find that young owners experienced growth in ownership between 2012 and 2020 and that younger employer businesses were mostly owned by women under the age of 35 in 2021. We show that among women aged 45 to 54 and those aged 55 to 64 ownership rates declined 5.5% and 4.8% between 2012 and 2020, implying an acceleration in the drop out of entrepreneurship for mid to late career age groups. We also show that older owners operate most businesses in capital-intensive industries, had more prior businesses, and higher rates of selling their most recently started businesses. Finally, we find that age groups often characterized as childbearing ages found balancing work and family as key drivers of their decision to start a business.
View Full
Paper PDF
-
Exploratory Report: Annual Business Survey Ownership Diversity and Its Association with Patenting and Venture Capital Success
October 2024
Working Paper Number:
CES-24-62
The Annual Business Survey (ABS) as the replacement for the Survey of Business Owners (SBO) serves as the principal data source for investigating business ownership of minorities, women, and immigrants. As a combination of SBO, the innovation questions formerly collected in the Business R&D and Innovation Survey (BRDIS), and an R&D module for microbusinesses with fewer than 10 employees, ABS opens new research opportunities investigating how ownership demographics are associated with innovation. One critical issue that ABS is uniquely able to investigate is the role that diversity among ownership teams plays in facilitating innovation or intermediate innovation outcomes in R&D-performing microbusinesses. Earlier research using ABS identified both demographic and disciplinary diversity as strong correlates to new-to-market innovation. This research investigates the extent to which the various forms of diversity also impact tangible innovation related intermediate outcomes such as the awarding of patents or securing venture capital financing for R&D. The other major difference with the earlier work is the focus on R&D-performing microbusinesses that are an essential input to radical innovation through the division of innovative labor. Evidence that disciplinary and/or demographic diversity affect the likelihood of receiving a patent or securing venture capital financing by small, high-tech start-ups may have implications for higher education, affirmative action, and immigration policy.
View Full
Paper PDF
-
Tracking Firm Use of AI in Real Time: A Snapshot from the Business Trends and Outlook Survey
March 2024
Working Paper Number:
CES-24-16R
Timely and accurate measurement of AI use by firms is both challenging and crucial for understanding the impacts of AI on the U.S. economy. We provide new, real-time estimates of current and expected future use of AI for business purposes based on the Business Trends and Outlook Survey for September 2023 to February 2024. During this period, bi-weekly estimates of AI use rate rose from 3.7% to 5.4%, with an expected rate of about 6.6% by early Fall 2024. The fraction of workers at businesses that use AI is higher, especially for large businesses and in the Information sector. AI use is higher in large firms but the relationship between AI use and firm size is non-monotonic. In contrast, AI use is higher in young firms. Common uses of AI include marketing automation, virtual agents, and data/text analytics. AI users often utilize AI to substitute for worker tasks and equipment/software, but few report reductions in employment due to AI use. Many firms undergo organizational changes to accommodate AI, particularly by training staff, developing new workflows, and purchasing cloud services/storage. AI users also exhibit better overall performance and higher incidence of employment expansion compared to other businesses. The most common reason for non-adoption is the inapplicability of AI to the business.
View Full
Paper PDF
-
Starting Up AI
March 2024
Working Paper Number:
CES-24-09R
Using comprehensive administrative data on business applications over the period 2004- 2023, we study business applications (ideas) and the resulting startups that aim to develop AI technologies or produce goods or services that use, integrate, or rely on AI. The annual number of new AI-related business applications is stable between 2004 and 2011, but begins to rise in 2012 with further increases from 2016 onward into the Covid-19 pandemic and beyond, with a large, discrete jump in 2023. The distribution of these applications is highly uneven across states and sectors. AI business applications have a higher likelihood of becoming employer startups compared to other applications. Moreover, businesses originating from these applications exhibit higher revenue, average wage, and labor share, but similar labor productivity and lower survival rate, compared to other businesses. While it is still early in the diffusion of AI, the rapid rise in AI business applications, combined with the better performance of resulting businesses in several key outcomes, suggests a growing contribution from AI-related business formation to business dynamism.
View Full
Paper PDF
-
AI Adoption in America: Who, What, and Where
September 2023
Working Paper Number:
CES-23-48R
We study the early adoption and diffusion of five AI-related technologies (automated-guided vehicles, machine learning, machine vision, natural language processing, and voice recognition) as documented in the 2018 Annual Business Survey of 850,000 firms across the United States. We find that fewer than 6% of firms used any of the AI-related technologies we measure, though most very large firms reported at least some AI use. Weighted by employment, average adoption was just over 18%. AI use in production, while varying considerably by industry, nevertheless was found in every sector of the economy and clustered with emerging technologies such as cloud computing and robotics. Among dynamic young firms, AI use was highest alongside more educated, more-experienced, and younger owners, including owners motivated by bringing new ideas to market or helping the community. AI adoption was also more common alongside indicators of high-growth entrepreneurship, including venture capital funding, recent product and process innovation, and growth-oriented business strategies. Early adoption was far from evenly distributed: a handful of 'superstar' cities and emerging hubs led startups' adoption of AI. These patterns of early AI use foreshadow economic and social impacts far beyond this limited initial diffusion, with the possibility of a growing 'AI divide' if early patterns persist.
View Full
Paper PDF