Papers written by Author(s): 'Illenin O. Kondo'
The following papers contain search terms that you selected. From the papers listed below, you can navigate to the PDF, the profile page for that working paper, or see all the working papers written by an author. You can also explore tags, keywords, and authors that occur frequently within these papers.
See Working Papers by Tag(s), Keywords(s), Author(s), or Search Text
Click here to search again
Frequently Occurring Concepts within this Search
No authors occur more than twice in this search.
By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
distribution - 2
Viewing papers 1 through 2 of 2
-
Working PaperGranular Income Inequality and Mobility using IDDA: Exploring Patterns across Race and Ethnicity
November 2023
Working Paper Number:
CES-23-55
Shifting earnings inequality among U.S. workers over the last five decades has been widely stud ied, but understanding how these shifts evolve across smaller groups has been difficult. Publicly available data sources typically only ensure representative data at high levels of aggregation, so they obscure many details of earnings distributions for smaller populations. We define and construct a set of granular statistics describing income distributions, income mobility and con ditional income growth for a large number of subnational groups in the U.S. for a two-decade period (1998-2019). In this paper, we use the resulting data to explore the evolution of income inequality and mobility for detailed groups defined by race and ethnicity. We find that patterns identified from the universe of tax filers and W-2 recipients that we observe differ in important ways from those that one might identify in public sources. The full set of statistics that we construct is available publicly as the Income Distributions and Dynamics in America, or IDDA, data set.View Full Paper PDF
-
Working PaperHeavy Tailed, but not Zipf: Firm and Establishment Size in the U.S.
July 2021
Working Paper Number:
CES-21-15
Heavy tails play an important role in modern macroeconomics and international economics. Previous work often assumes a Pareto distribution for firm size, typically with a shape parameter approaching Zipf's law. This convenient approximation has dramatic consequences for the importance of large firms in the economy. But we show that a lognormal distribution, or better yet, a convolution of a lognormal and a non-Zipf Pareto distribution, provides a better description of the U.S. economy, using confidential Census Bureau data. These findings hold even far in the upper tail and suggest heterogeneous firm models should more systematically explore deviations from Zipf's law.View Full Paper PDF