We introduce a new survey module intended to complement and expand research on the causes and consequences of advanced technology adoption. The 2018 Annual Business Survey (ABS), conducted by the Census Bureau in partnership with the National Center for Science and Engineering Statistics (NCSES), provides comprehensive and timely information on the diffusion among U.S. firms of advanced technologies including artificial intelligence (AI), cloud computing, robotics, and the digitization of business information. The 2018 ABS is a large, nationally representative sample of over 850,000 firms covering all private, nonfarm sectors of the economy. We describe the motivation for and development of the technology module in the ABS, as well as provide a first look at technology adoption and use patterns across firms and sectors. We find that digitization is quite widespread, as is some use of cloud computing. In contrast, advanced technology adoption is rare and generally skewed towards larger and older firms. Adoption patterns are consistent with a hierarchy of increasing technological sophistication, in which most firms that adopt AI or other advanced business technologies also use the other, more widely diffused technologies. Finally, while few firms are at the technology frontier, they tend to be large so technology exposure of the average worker is significantly higher. This new data will be available to qualified researchers on approved projects in the Federal Statistical Research Data Center network.
-
Tracking Firm Use of AI in Real Time: A Snapshot from the Business Trends and Outlook Survey
March 2024
Working Paper Number:
CES-24-16R
Timely and accurate measurement of AI use by firms is both challenging and crucial for understanding the impacts of AI on the U.S. economy. We provide new, real-time estimates of current and expected future use of AI for business purposes based on the Business Trends and Outlook Survey for September 2023 to February 2024. During this period, bi-weekly estimates of AI use rate rose from 3.7% to 5.4%, with an expected rate of about 6.6% by early Fall 2024. The fraction of workers at businesses that use AI is higher, especially for large businesses and in the Information sector. AI use is higher in large firms but the relationship between AI use and firm size is non-monotonic. In contrast, AI use is higher in young firms. Common uses of AI include marketing automation, virtual agents, and data/text analytics. AI users often utilize AI to substitute for worker tasks and equipment/software, but few report reductions in employment due to AI use. Many firms undergo organizational changes to accommodate AI, particularly by training staff, developing new workflows, and purchasing cloud services/storage. AI users also exhibit better overall performance and higher incidence of employment expansion compared to other businesses. The most common reason for non-adoption is the inapplicability of AI to the business.
View Full
Paper PDF
-
Automation and the Workforce: A Firm-Level View from the 2019 Annual Business Survey
April 2022
Authors:
John Haltiwanger,
Lucia Foster,
Emin Dinlersoz,
Nikolas Zolas,
Daron Acemoglu,
Catherine Buffington,
Nathan Goldschlag,
Zachary Kroff,
David Beede,
Gary Anderson,
Eric Childress,
Pascual Restrepo
Working Paper Number:
CES-22-12R
This paper describes the adoption of automation technologies by US firms across all economic sectors by leveraging a new module introduced in the 2019 Annual Business Survey, conducted by the US Census Bureau in partnership with the National Center for Science and Engineering Statistics (NCSES). The module collects data from over 300,000 firms on the use of five advanced technologies: AI, robotics, dedicated equipment, specialized software, and cloud computing. The adoption of these technologies remains low (especially for AI and robotics), varies substantially across industries, and concentrates on large and young firms. However, because larger firms are much more likely to adopt them, 12-64% of US workers and 22-72% of manufacturing workers are exposed to these technologies. Firms report a variety of motivations for adoption, including automating tasks previously performed by labor. Consistent with the use of these technologies for automation, adopters have higher labor productivity and lower labor shares. In particular, the use of these technologies is associated with a 11.4% higher labor productivity, which accounts for 20'30% of the difference in labor productivity between large firms and the median firm in an industry. Adopters report that these technologies raised skill requirements and led to greater demand for skilled labor, but brought limited or ambiguous effects to their employment levels.
View Full
Paper PDF
-
AI Adoption in America: Who, What, and Where
September 2023
Working Paper Number:
CES-23-48R
We study the early adoption and diffusion of five AI-related technologies (automated-guided vehicles, machine learning, machine vision, natural language processing, and voice recognition) as documented in the 2018 Annual Business Survey of 850,000 firms across the United States. We find that fewer than 6% of firms used any of the AI-related technologies we measure, though most very large firms reported at least some AI use. Weighted by employment, average adoption was just over 18%. AI use in production, while varying considerably by industry, nevertheless was found in every sector of the economy and clustered with emerging technologies such as cloud computing and robotics. Among dynamic young firms, AI use was highest alongside more educated, more-experienced, and younger owners, including owners motivated by bringing new ideas to market or helping the community. AI adoption was also more common alongside indicators of high-growth entrepreneurship, including venture capital funding, recent product and process innovation, and growth-oriented business strategies. Early adoption was far from evenly distributed: a handful of 'superstar' cities and emerging hubs led startups' adoption of AI. These patterns of early AI use foreshadow economic and social impacts far beyond this limited initial diffusion, with the possibility of a growing 'AI divide' if early patterns persist.
View Full
Paper PDF
-
The Characteristics and Geographic Distribution of Robot Hubs in U.S. Manufacturing Establishments
March 2023
Working Paper Number:
CES-23-14
We use data from the Annual Survey of Manufactures to study the characteristics and geography of investments in robots across U.S. manufacturing establishments. We find that robotics adoption and robot intensity (the number of robots per employee) is much more strongly related to establishment size than age. We find that establishments that report having robotics have higher capital expenditures, including higher information technology (IT) capital expenditures. Also, establishments are more likely to have robotics if other establishments in the same Core-Based Statistical Area (CBSA) and industry also report having robotics. The distribution of robots is highly skewed across establishments' locations. Some locations, which we call Robot Hubs, have far more robots than one would expect even after accounting for industry and manufacturing employment. We characterize these Robot Hubs along several industry, demographic, and institutional dimensions. The presence of robot integrators and higher levels of union membership are positively correlated with being a Robot Hub.
View Full
Paper PDF
-
Technology Usage in U.S. Manufacturing Industries: New Evidence from the Survey of Manufacturing Technology
October 1991
Working Paper Number:
CES-91-07
Using a new dataset on technology usage in U.S. manufacturing plants, this paper describes how technology usage varies by plant and firm characteristics. The paper extends the previous literature in three important ways. First, it examines a wide range of relatively new technologies. Second, the paper uses a much larger and more representative set of firms and establishments than previous studies. Finally, the paper explores the role of firm R&D expenditures in the process of technology adoption. The main findings indicate that larger plants more readily use new technologies, plants owned by firms with high R&D-to-sales ratios adopt technologies more rapidly, and the relationship between plant age and technology usage is relatively weak.
View Full
Paper PDF
-
The Management and Organizational Practices Survey (MOPS): An Overview*
January 2016
Working Paper Number:
CES-16-28
Understanding productivity and business dynamics requires measuring production outputs and inputs. Through its surveys and use of administrative data, the Census Bureau collects information on production outputs and inputs including labor, capital, energy, and materials. With the introduction of the Management and Organizational Practices Survey (MOPS), the Census Bureau added information on another component of production: management. It has long been hypothesized that management is an important component of firm success, but until recently the study of management was confined to hypotheses, anecdotes, and case studies. Building upon the work of Bloom and Van Reenen (2007), the first-ever large scale survey of management practices in the United States, the MOPS, was conducted by the Census Bureau for 2010. A second, enhanced version of the MOPS is being conducted for 2015. The enhancement includes two new topics related to management: data and decision making (DDD) and uncertainty. As information technology has expanded plants are increasingly able to utilize data in their decision making. Structured management practices have been found to be complementary to DDD in earlier studies. Uncertainty has policy implications because uncertainty is found to be associated with reduced investment and employment. Uncertainty also plays a role in the targeting component of management.
View Full
Paper PDF
-
High Frequency Business Dynamics in the United States During the COVID-19 Pandemic
March 2021
Working Paper Number:
CES-21-06
Existing small businesses experienced very sharp declines in activity, business sentiment, and expectations early in the pandemic. While there has been some recovery since the early days of the pandemic, small businesses continued to exhibit indicators of negative growth, business sentiment, and expectations through the first week of January 2021. These findings are from a unique high frequency, real time survey of small employer businesses, the Census Bureau's Small Business Pulse Survey (SBPS). Findings from the SBPS show substantial variation across sectors in the outcomes for small businesses. Small businesses in Accommodation and Food Services have been hit especially hard relative to those Finance and Insurance. However, even in Finance and Insurance small businesses exhibit indicators of negative growth, business sentiment, and expectations for all weeks from late April 2020 through the first week of 2021. While existing small businesses have fared poorly, after an initial decline, there has been a surge in new business applications based on the high frequency, real time Business Formation Statistics (BFS). Most of these applications are for likely nonemployers that are out of scope for the SBPS. However, there has also been a surge in new applications for likely employers. The surge in applications has been especially apparent in Retail Trade (and especially Non-store Retailers). We compare and contrast the patterns from these two new high frequency data products that provide novel insights into the distinct patterns of dynamics for existing small businesses relative to new business formations.
View Full
Paper PDF
-
Development of Survey Questions on Robotics Expenditures and Use in U.S. Manufacturing Establishments
October 2018
Working Paper Number:
CES-18-44
The U.S. Census Bureau in partnership with a team of external researchers developed a series of questions on the use of robotics in U.S. manufacturing establishments. The questions include: (1) capital expenditures for new and used industrial robotic equipment in 2018, (2) number of industrial robots in operation in 2018, and (3) number of industrial robots purchased in 2018. These questions are to be included in the 2018 Annual Survey of Manufactures. This paper documents the background and cognitive testing process used for the development of these questions.
View Full
Paper PDF
-
The Annual Survey of Entrepreneurs: An Introduction
November 2015
Working Paper Number:
CES-15-40R
The Census Bureau continually seeks to improve its measures of the U.S. economy as part of its mission. In some cases this means expanding or updating the content of its existing surveys, expanding the use of administrative data, and/or exploring the use of privately collected data. When these options cannot provide the needed data, the Census Bureau may consider fielding a new survey to fill the gap. This paper describes one such new survey, the Annual Survey of Entrepreneurs (ASE). Innovations in content, format, and process are designed to provide high-quality, timely, frequent information on the activities of one of the important drivers of economic growth: entrepreneurship. The ASE is collected through a partnership of the Census Bureau with the Kauffman Foundation and the Minority Business Development Agency. The first wave of the ASE collection started in fall of 2015 (for reference period 2014) and results will be released in summer 2016. Qualified researchers on approved projects will be able to access micro data from the ASE through the Federal Statistical Research Data Center (FSRDC) network.
View Full
Paper PDF
-
Starting Up AI
March 2024
Working Paper Number:
CES-24-09R
Using comprehensive administrative data on business applications over the period 2004- 2023, we study business applications (ideas) and the resulting startups that aim to develop AI technologies or produce goods or services that use, integrate, or rely on AI. The annual number of new AI-related business applications is stable between 2004 and 2011, but begins to rise in 2012 with further increases from 2016 onward into the Covid-19 pandemic and beyond, with a large, discrete jump in 2023. The distribution of these applications is highly uneven across states and sectors. AI business applications have a higher likelihood of becoming employer startups compared to other applications. Moreover, businesses originating from these applications exhibit higher revenue, average wage, and labor share, but similar labor productivity and lower survival rate, compared to other businesses. While it is still early in the diffusion of AI, the rapid rise in AI business applications, combined with the better performance of resulting businesses in several key outcomes, suggests a growing contribution from AI-related business formation to business dynamism.
View Full
Paper PDF