In response to the novel coronavirus (COVID-19) pandemic, the Census Bureau developed and fielded an entirely new survey intended to measure the effect on small businesses. The Small Business Pulse Survey (SBPS) will run weekly from April 26 to June 27, 2020. Results from the SBPS will be published weekly through a visualization tool with downloadable data. We describe the motivation for SBPS, summarize how the content for the survey was developed, and discuss some of the initial results from the survey. We also describe future plans for the SBPS collections and for our research using the SBPS data. Estimates from the first week of the SBPS indicate large to moderate negative effects of COVID-19 on small businesses, and yet the majority expect to return to usual level of operations within the next six months. Reflecting the Census Bureau's commitment to scientific inquiry and transparency, the micro data from the SBPS will be available to qualified researchers on approved projects in the Federal Statistical Research Data Center network.
-
High Frequency Business Dynamics in the United States During the COVID-19 Pandemic
March 2021
Working Paper Number:
CES-21-06
Existing small businesses experienced very sharp declines in activity, business sentiment, and expectations early in the pandemic. While there has been some recovery since the early days of the pandemic, small businesses continued to exhibit indicators of negative growth, business sentiment, and expectations through the first week of January 2021. These findings are from a unique high frequency, real time survey of small employer businesses, the Census Bureau's Small Business Pulse Survey (SBPS). Findings from the SBPS show substantial variation across sectors in the outcomes for small businesses. Small businesses in Accommodation and Food Services have been hit especially hard relative to those Finance and Insurance. However, even in Finance and Insurance small businesses exhibit indicators of negative growth, business sentiment, and expectations for all weeks from late April 2020 through the first week of 2021. While existing small businesses have fared poorly, after an initial decline, there has been a surge in new business applications based on the high frequency, real time Business Formation Statistics (BFS). Most of these applications are for likely nonemployers that are out of scope for the SBPS. However, there has also been a surge in new applications for likely employers. The surge in applications has been especially apparent in Retail Trade (and especially Non-store Retailers). We compare and contrast the patterns from these two new high frequency data products that provide novel insights into the distinct patterns of dynamics for existing small businesses relative to new business formations.
View Full
Paper PDF
-
Small Business Pulse Survey Estimates by Owner Characteristics and Rural/Urban Designation
September 2021
Working Paper Number:
CES-21-24
In response to requests from policymakers for additional context for Small Business Pulse Survey (SBPS) measures of the impact of COVID-19 on small businesses, we researched developing estimates by owner characteristics and rural/urban locations. Leveraging geographic coding on the Business Register, we create estimates of the effect of the pandemic on small businesses by urban and rural designations. A more challenging exercise entails linking micro-level data from the SBPS with ownership data from the Annual Business Survey (ABS) to create estimates of the effect of the pandemic on small businesses by owner race, sex, ethnicity, and veteran status. Given important differences in survey design and concerns about nonresponse bias, we face significant challenges in producing estimates for owner demographics. We discuss our attempts to meet these challenges and provide discussion about caution that must be used in interpreting the results. The estimates produced for this paper are available for download. Reflecting the Census Bureau's commitment to scientific inquiry and transparency, the micro data from the SBPS will be available to qualified researchers on approved projects in the Federal Statistical Research Data Center network.
View Full
Paper PDF
-
Measuring the Impact of COVID-19 on Businesses and People: Lessons from the Census Bureau's Experience
January 2021
Working Paper Number:
CES-21-02
We provide an overview of Census Bureau activities to enhance the consistency, timeliness, and relevance of our data products in response to the COVID-19 pandemic. We highlight new data products designed to provide timely and granular information on the pandemic's impact: the Small Business Pulse Survey, weekly Business Formation Statistics, the Household Pulse Survey, and Community Resilience Estimates. We describe pandemic-related content introduced to existing surveys such as the Annual Business Survey and the Current Population Survey. We discuss adaptations to ensure the continuity and consistency of existing data products such as principal economic indicators and the American Community Survey.
View Full
Paper PDF
-
The Annual Survey of Entrepreneurs: An Introduction
November 2015
Working Paper Number:
CES-15-40R
The Census Bureau continually seeks to improve its measures of the U.S. economy as part of its mission. In some cases this means expanding or updating the content of its existing surveys, expanding the use of administrative data, and/or exploring the use of privately collected data. When these options cannot provide the needed data, the Census Bureau may consider fielding a new survey to fill the gap. This paper describes one such new survey, the Annual Survey of Entrepreneurs (ASE). Innovations in content, format, and process are designed to provide high-quality, timely, frequent information on the activities of one of the important drivers of economic growth: entrepreneurship. The ASE is collected through a partnership of the Census Bureau with the Kauffman Foundation and the Minority Business Development Agency. The first wave of the ASE collection started in fall of 2015 (for reference period 2014) and results will be released in summer 2016. Qualified researchers on approved projects will be able to access micro data from the ASE through the Federal Statistical Research Data Center (FSRDC) network.
View Full
Paper PDF
-
The Annual Survey of Entrepreneurs: An Update
January 2017
Working Paper Number:
CES-17-46
We provide an update on the Annual Survey of Entrepreneurs (ASE), which is a relatively new Census Bureau business survey. About 290,000 employer firms in the private, non-agricultural U.S. economy are in the ASE sample. Its content is relatively constant over collections, allowing for comparability over time; however, each year there are approximately ten new questions in a changing topical module. Earlier topical modules covered innovation (2014) and management practices (2015). The topical module for reference year 2016 covers business advice and planning, finance, and regulations. The ASE is collected through a partnership of the Census Bureau with the Kauffman Foundation and the Minority Business Development Agency. Qualified researchers on approved projects may request access to the ASE micro data through the Federal Statistical Research Data Center (FSRDC) network.
View Full
Paper PDF
-
Tracking Firm Use of AI in Real Time: A Snapshot from the Business Trends and Outlook Survey
March 2024
Working Paper Number:
CES-24-16R
Timely and accurate measurement of AI use by firms is both challenging and crucial for understanding the impacts of AI on the U.S. economy. We provide new, real-time estimates of current and expected future use of AI for business purposes based on the Business Trends and Outlook Survey for September 2023 to February 2024. During this period, bi-weekly estimates of AI use rate rose from 3.7% to 5.4%, with an expected rate of about 6.6% by early Fall 2024. The fraction of workers at businesses that use AI is higher, especially for large businesses and in the Information sector. AI use is higher in large firms but the relationship between AI use and firm size is non-monotonic. In contrast, AI use is higher in young firms. Common uses of AI include marketing automation, virtual agents, and data/text analytics. AI users often utilize AI to substitute for worker tasks and equipment/software, but few report reductions in employment due to AI use. Many firms undergo organizational changes to accommodate AI, particularly by training staff, developing new workflows, and purchasing cloud services/storage. AI users also exhibit better overall performance and higher incidence of employment expansion compared to other businesses. The most common reason for non-adoption is the inapplicability of AI to the business.
View Full
Paper PDF
-
Business Applications as a Leading Economic Indicator?
May 2021
Working Paper Number:
CES-21-09R
How are applications to start new businesses related to aggregate economic activity? This paper explores the properties of three monthly business application series from the U.S. Census Bureau's Business Formation Statistics as economic indicators: all business applications, business applications that are relatively likely to turn into new employer businesses ('likely employers'), and the residual series -- business applications that have a relatively low rate of becoming employers ('likely non-employers'). Growth in applications for likely employers significantly leads total nonfarm employment growth and has a strong positive correlation with it. Furthermore, growth in applications for likely employers leads growth in most of the monthly Principal Federal Economic Indicators (PFEIs). Motivated by our findings, we estimate a dynamic factor model (DFM) to forecast nonfarm employment growth over a 12-month period using the PFEIs and the likely employers series. The latter improves the model's forecast, especially in the years following the turning points of the Great Recession and the COVID-19 pandemic. Overall, applications for likely employers are a strong leading indicator of monthly PFEIs and aggregate economic activity, whereas applications for likely non-employers provide early information about changes in increasingly prevalent self-employment activity in the U.S. economy.
View Full
Paper PDF
-
Nonresponse and Coverage Bias in the Household Pulse Survey: Evidence from Administrative Data
October 2024
Working Paper Number:
CES-24-60
The Household Pulse Survey (HPS) conducted by the U.S. Census Bureau is a unique survey that provided timely data on the effects of the COVID-19 Pandemic on American households and continues to provide data on other emergent social and economic issues. Because the survey has a response rate in the single digits and only has an online response mode, there are concerns about nonresponse and coverage bias. In this paper, we match administrative data from government agencies and third-party data to HPS respondents to examine how representative they are of the U.S. population. For comparison, we create a benchmark of American Community Survey (ACS) respondents and nonrespondents and include the ACS respondents as another point of reference. Overall, we find that the HPS is less representative of the U.S. population than the ACS. However, performance varies across administrative variables, and the existing weighting adjustments appear to greatly improve the representativeness of the HPS. Additionally, we look at household characteristics by their email domain to examine the effects on coverage from limiting email messages in 2023 to addresses from the contact frame with at least 90% deliverability rates, finding no clear change in the representativeness of the HPS afterwards.
View Full
Paper PDF
-
Building the Census Bureau Index of Economic Activity (IDEA)
March 2023
Working Paper Number:
CES-23-15
The Census Bureau Index of Economic Activity (IDEA) is constructed from 15 of the Census Bureau's primary monthly economic time series. The index is intended to provide a single time series reflecting, to the extent possible, the variation over time in the whole set of component series. The component series provide monthly measures of activity in retail and wholesale trade, manufacturing, construction, international trade, and business formations. Most of the input series are Principal Federal Economic Indicators. The index is constructed by applying the method of principal components analysis (PCA) to the time series of monthly growth rates of the seasonally adjusted component series, after standardizing the growth rates to series with mean zero and variance 1. Similar PCA approaches have been used for the construction of other economic indices, including the Chicago Fed National Activity Index issued by the Federal Reserve Bank of Chicago, and the Weekly Economic Index issued by the Federal Reserve Bank of New York. While the IDEA is constructed from time series of monthly data, it is calculated and published every business day, and so is updated whenever a new monthly value is released for any of its component series. Since release dates of data values for a given month vary across the component series, with slight variations in the monthly release date for any one component series, updates to the index are frequent. It is unavoidably the case that, at almost all updates, some of the component series lack observations for the current (most recent) data month. To address this situation, component series that are one month behind are predicted (nowcast) for the current index month, using a multivariate autoregressive time series model. This report discusses the input series to the index, the construction of the index by PCA, and the nowcasting procedure used. The report then examines some properties of the index and its relation to quarterly U.S. Gross Domestic Product and to some monthly non-Census Bureau economic indicators.
View Full
Paper PDF
-
Incorporating Administrative Data in Survey Weights for the Basic Monthly Current Population Survey
January 2024
Working Paper Number:
CES-24-02
Response rates to the Current Population Survey (CPS) have declined over time, raising the potential for nonresponse bias in key population statistics. A potential solution is to leverage administrative data from government agencies and third-party data providers when constructing survey weights. In this paper, we take two approaches. First, we use administrative data to build a non-parametric nonresponse adjustment step while leaving the calibration to population estimates unchanged. Second, we use administratively linked data in the calibration process, matching income data from the Internal Return Service and state agencies, demographic data from the Social Security Administration and the decennial census, and industry data from the Census Bureau's Business Register to both responding and nonresponding households. We use the matched data in the household nonresponse adjustment of the CPS weighting algorithm, which changes the weights of respondents to account for differential nonresponse rates among subpopulations.
After running the experimental weighting algorithm, we compare estimates of the unemployment rate and labor force participation rate between the experimental weights and the production weights. Before March 2020, estimates of the labor force participation rates using the experimental weights are 0.2 percentage points higher than the original estimates, with minimal effect on unemployment rate. After March 2020, the new labor force participation rates are similar, but the unemployment rate is about 0.2 percentage points higher in some months during the height of COVID-related interviewing restrictions. These results are suggestive that if there is any nonresponse bias present in the CPS, the magnitude is comparable to the typical margin of error of the unemployment rate estimate. Additionally, the results are overall similar across demographic groups and states, as well as using alternative weighting methodology. Finally, we discuss how our estimates compare to those from earlier papers that calculate estimates of bias in key CPS labor force statistics.
This paper is for research purposes only. No changes to production are being implemented at this time.
View Full
Paper PDF