Using a new dataset on technology usage in U.S. manufacturing plants, this paper describes how technology usage varies by plant and firm characteristics. The paper extends the previous literature in three important ways. First, it examines a wide range of relatively new technologies. Second, the paper uses a much larger and more representative set of firms and establishments than previous studies. Finally, the paper explores the role of firm R&D expenditures in the process of technology adoption. The main findings indicate that larger plants more readily use new technologies, plants owned by firms with high R&D-to-sales ratios adopt technologies more rapidly, and the relationship between plant age and technology usage is relatively weak.
-
Energy Intensity, Electricity Consumption, and Advanced Manufacturing Technology Usage
July 1993
Working Paper Number:
CES-93-09
This paper reports on the relationship between the usage of advanced manufacturing technologies (AMTs) and energy consumption patterns in manufacturing plants. Using data from the Survey of Manufacturing Technology and the 1987 Census of Manufactures, we model the energy intensity and the electricity intensity of plants as functions of AMT usage and plant age. The main findings are that plants which utilize AMTs are less energy intensive than plants not using AMTs but consume proportionately more electricity as a fuel source. Additionally, older plants are generally more energy intensive and rely on fossil fuels to a greater extent than younger plants.
View Full
Paper PDF
-
The Effect Of Technology Use On Productivity Growth
April 1996
Working Paper Number:
CES-96-02
This paper examines the relationship between the use of advanced technologies and productivity and productivity growth rates. We use data from the 1993 and 1988 Survey of Manufacturing Technology (SMT) to examine the use of advanced (computer based) technologies at two different points in time. We are also able to combine the survey data with the Longitudinal Research Database (LRD) to examine the relationships between plant performance, plant characteristics, and the use of advanced technologies. In addition, a subset of these plants were surveyed in both years, enabling us to directly associate changes in technology use with changes in plant productivity performance. The main findings of the study are as follows. First, diffusion is not the same across the surveyed technologies. Second, the adoption process is not smooth: plants added and dropped technologies over the six-year interval 1988-93. In fact, the average plant showed a gross change of roughly four technologies in achieving an average net increase of less than one new technology. In this regard, technology appears to be an experience good: plants experiment with particular technologies before deciding to add additional units or drop the technology entirely. We find that establishments that use advanced technologies exhibit higher productivity. This relationship is observed in both 1988 and 1993 even after accounting for other important factors associated with productivity: size, age, capital intensity, labor skill mix, and other controls for plant characteristics such as industry and region. In addition, the relationship between productivity and advanced technology use is observed both in the extent of technologies used and the intensity of their use. Finally, while there is some evidence that the use of advanced technologies is positively related to improved productivity performance, the data suggest that the dominant explanation for the observed cross-section relationship is that good performers are more likely to use advanced technologies than poorly performing operations.
View Full
Paper PDF
-
An Option-Value Approach to Technology in U.S. Maufacturing: Evidence from Plant-Level Data
July 2000
Working Paper Number:
CES-00-12
Numerous empirical studies have examined the role of firm and industry heterogeneity in the decision to adopt new technologies using a Net Present Value framework. However, as suggested by the recently developed option-value theory, these studies may have overlooked the role of investment reversibility and uncertainty as important determinants of technology adoption. Using the option-value investment model as my underlying theoretical framework, I examine how these two factors affect the decision to adopt three advanced manufacturing technologies. My results support the option-value model's prediction that plants operating in industries facing higher investment reversibility and lower degrees of demand and technological uncertainty are more likely to adopt advanced manufacturing technologies.
View Full
Paper PDF
-
Advanced Technologies Adoption and Use by U.S. Firms: Evidence from the Annual Business Survey
December 2020
Working Paper Number:
CES-20-40
We introduce a new survey module intended to complement and expand research on the causes and consequences of advanced technology adoption. The 2018 Annual Business Survey (ABS), conducted by the Census Bureau in partnership with the National Center for Science and Engineering Statistics (NCSES), provides comprehensive and timely information on the diffusion among U.S. firms of advanced technologies including artificial intelligence (AI), cloud computing, robotics, and the digitization of business information. The 2018 ABS is a large, nationally representative sample of over 850,000 firms covering all private, nonfarm sectors of the economy. We describe the motivation for and development of the technology module in the ABS, as well as provide a first look at technology adoption and use patterns across firms and sectors. We find that digitization is quite widespread, as is some use of cloud computing. In contrast, advanced technology adoption is rare and generally skewed towards larger and older firms. Adoption patterns are consistent with a hierarchy of increasing technological sophistication, in which most firms that adopt AI or other advanced business technologies also use the other, more widely diffused technologies. Finally, while few firms are at the technology frontier, they tend to be large so technology exposure of the average worker is significantly higher. This new data will be available to qualified researchers on approved projects in the Federal Statistical Research Data Center network.
View Full
Paper PDF
-
The Role of Technological and Industrial Heterogeneity In Technology Diffusion: a Markovian Approach
February 2003
Working Paper Number:
CES-03-07
Recent empirical studies have established the importance of intra and inter-industry heterogeneity in investment in innovation and other outcomes. This paper examines the role of industry and technology heterogeneity in the diffusion of advanced manufacturing technologies from a simple Markovian approach. Using the Maximum Entropy estimator, I estimate transition probabilities and corresponding half-lives, look for outliers in technology and industry diffusion patterns, and try to find explanations of their unusual behavior in idiosyncratic technology and industry characteristics. A consistent industry-level pattern that emerged is one that relates consumer demand and production processes. It seems that in industries where hand-made products are a sign of quality to the customer, technology spreads very slowly. On the other hand, in industries where demand for sophisticated, high-precision goods is high or in industries where demand-driven product specifications vary quite rapidly over relatively short periods of time, advanced technologies diffuse much more rapidly.
View Full
Paper PDF
-
The Adoption and Diffusion of Organizational Innovation: Evidence for the U.S. Economy
June 2007
Working Paper Number:
CES-07-18
Using a unique longitudinal representative survey of both manufacturing and nonmanufacturing businesses in the United States during the 1990's, I examine the incidence and intensity of organizational innovation and the factors associated with investments in organizational innovation. Past profits tend to be positively associated with organizational innovation. Employers with a more external focus and broader networks to learn about best practices (as proxied by exports, benchmarking, and being part of a multi-establishment firm) are more likely to invest in organizational innovation. Investments in human capital, information technology, R&D, and physical capital appear to be complementary with investments in organizational innovation. In addition, nonunionized manufacturing plants are more likely to have invested more broadly and intensely in organizational innovation.
View Full
Paper PDF
-
Technology Use and Worker Outcomes: Direct Evidence from Linked Employee-Employer Data
August 2000
Working Paper Number:
CES-00-13
We investigate the impact of technology adoption on workers' wages and mobility in U.S. manufacturing plants by constructing and exploiting a unique Linked Employee-Employer data set containing longitudinal worker and plant information. We first examine the effect of technology use on wage determination, and find that technology adoption does not have a significant effect on high-skill workers, but negatively affects the earnings of low-skill workers after controlling for worker-plant fixed effects. This result seems to support the skill-biased technological change hypothesis. We next explore the impact of technology use on worker mobility, and find that mobility rates are higher in high-technology plants, and that high-skill workers are more mobile than their low and medium-skill counterparts. However, our technology-skill interaction term indicates that as the number of adopted technologies increases, the probability of exit of skilled workers decreases while that of unskilled workers increases.
View Full
Paper PDF
-
Computer Networks and U.S. Manufacturing Plant Productivity: New Evidence from the CNUS Data
January 2002
Working Paper Number:
CES-02-01
How do computers affect productivity? Many recent studies argue that using information technology, particularly computers, is a significant source of U.S. productivity growth. The specific mechanism remains elusive. Detailed data on the use of computers and computer networks have been scarce. Plant-level data on the use of computer networks and electronic business processes in the manufacturing sector of the United States were collected for the first time in 1999. Using these data, we find strong links between labor productivity and the presence of computer networks. We find that average labor productivity is higher in plants with networks. Computer networks have a positive and significant effect on plant labor productivity after controlling for multiple factors of production and plant characteristics. Networks increase estimated labor productivity by roughly 5 percent, depending on model specification. Model specifications that account for endogenous computer networks also show a positive and significant relationship. Our work differs from others in several important aspects. First, ours is the first study that directly links the use of computer networks to labor productivity using plant-level data for the entire U.S. manufacturing sector. Second, we extend the existing model relating computers to productivity by including materials as an explicit factor input. Third, we test for possible endogeneity problems associated with the computer network variable.
View Full
Paper PDF
-
Automation, Labor Share, and Productivity:
Plant-Level Evidence from U.S. Manufacturing
September 2018
Working Paper Number:
CES-18-39
This paper provides new evidence on the plant-level relationship between automation, labor and capital usage, and productivity. The evidence, based on the U.S. Census Bureau's Survey of Manufacturing Technology, indicates that more automated establishments have lower production labor share and higher capital share, and a smaller fraction of workers in production who receive higher wages. These establishments also have higher labor productivity and experience larger long-term labor share declines. The relationship between automation and relative factor usage is modelled using a CES production function with endogenous technology choice. This deviation from the standard Cobb-Douglas assumption is necessary if the within-industry differences in the capital-labor ratio are determined by relative input price differences. The CES-based total factor productivity estimates are significantly different from the ones derived under Cobb-Douglas production and positively related to automation. The results, taken together with earlier findings of the productivity literature, suggest that the adoption of automation may be one mechanism associated with the rise of superstar firms.
View Full
Paper PDF
-
How Businesses Use Information Technology: Insights for Measuring Technology and Productivity
June 2006
Working Paper Number:
CES-06-15
Business use of computers in the United States dates back fifty years. Simply investing in information technology is unlikely to offer a competitive advantage today. Differences in how businesses use that technology should drive differences in economic performance. Our previous research found that one business use ' computers linked into networks ' is associated with significantly higher labor productivity. In this paper, we extend our analysis with new information about the ways that businesses use their networks. Those data show that businesses conduct a variety of general processes over computer networks, such as order taking, inventory monitoring, and logistics tracking, with considerable heterogeneity among businesses. We find corresponding empirical diversity in the relationship between these on-line processes and productivity, supporting the heterogeneity hypothesis. On-line supply chain activities such as order tracking and logistics have positive and statistically significant productivity impacts, but not processes associated with production, sales, or human resources. The productivity impacts differ by plant age, with higher impacts in new plants. This new information about the ways businesses use information technology yields vital raw material for understanding how using information technology improves economic performance.
View Full
Paper PDF