CREAT: Census Research Exploration and Analysis Tool

Papers Containing Keywords(s): 'manufacturing productivity'

The following papers contain search terms that you selected. From the papers listed below, you can navigate to the PDF, the profile page for that working paper, or see all the working papers written by an author. You can also explore tags, keywords, and authors that occur frequently within these papers.
Click here to search again

Frequently Occurring Concepts within this Search

No authors occur more than twice in this search.

Viewing papers 1 through 10 of 11


  • Working Paper

    The Rising Returns to R&D: Ideas Are Not Getting Harder to Find

    May 2025

    Working Paper Number:

    CES-25-29

    R&D investment has grown robustly, yet aggregate productivity growth has stagnated. Is this because 'ideas are getting harder to find'? This paper uses micro-data from the US Census Bureau to explore the relationship between R&D and productivity in the manufacturing sector from 1976 to 2018. We find that both the elasticity of output (TFP) with respect to R&D and the marginal returns to R&D have risen sharply. Exploring factors affecting returns, we conclude that R&D obsolescence rates must have risen. Using a novel estimation approach, we find consistent evidence of sharply rising technological rivalry. These findings suggest that R&D has become more effective at finding productivity-enhancing ideas but these ideas may also render rivals' technologies obsolete, making innovations more transient.
    View Full Paper PDF
  • Working Paper

    Decomposing Aggregate Productivity

    July 2022

    Working Paper Number:

    CES-22-25

    In this note, we evaluate the sensitivity of commonly-used decompositions for aggregate productivity. Our analysis spans the universe of U.S. manufacturers from 1977 to 2012 and we find that, even holding the data and form of the production function fixed, results on aggregate productivity are extremely sensitive to how productivity at the firm level is measured. Even qualitative statements about the levels of aggregate productivity and the sign of the covariance between productivity and size are highly dependent on how production function parameters are estimated. Despite these difficulties, we uncover some consistent facts about productivity growth: (1) labor productivity is consistently higher and less error-prone than measures of multi-factor productivity; (2) most productivity growth comes from growth within firms, rather than from reallocation across firms; (3) what growth does come from reallocation appears to be driven by net entry, primarily from the exit of relatively less-productive firms.
    View Full Paper PDF
  • Working Paper

    Evaluating the Long-Term Effect of NIST MEP Services on Establishment Performance

    March 2015

    Working Paper Number:

    CES-15-09

    This work examines the effects of receipt of business assistance services from the Manufacturing Extension Partnership (MEP) on manufacturing establishment performance. Several measures of performance are considered: (1) change in value-added per employee (a measure of productivity); (2) change in sales per worker; (3) change in employment; and (4) establishment survival. To analyze these relationships, we merged program records from the MEP's client and project information files with administrative records from the Census of Manufacturers and other Census databases over the periods 1997'2002 and 2002'2007 to compare the outcomes and performance of 'served' and 'unserved' manufacturing establishments. The approach builds on, updates, and expands upon earlier studies comparing matched MEP client and non-client performance over time periods ending in 1992 and 2002. Our results generally indicate that MEP services had positive and significant impacts on establishment productivity and sales per worker for the 2002'2007 period with some exceptions based on employment size, industry, and type of service provided. MEP services also increased the probability of establishment survival for the 1997'2007 period. Regardless of econometric model specification, MEP clients with 1'19 employees have statistically significant and higher levels of labor productivity growth. We also observed significant productivity differences associated with MEP services by broad sector, with higher impacts over the 2002'2007 time period in the durable goods manufacturing sector. The study further finds that establishments receiving MEP assistance are more likely to survive than those that do not receive MEP assistance. Detailed findings of the study, as well as caveats and limitations, are discussed in the paper.
    View Full Paper PDF
  • Working Paper

    The Life Cycle of Plants in India and Mexico

    September 2012

    Working Paper Number:

    CES-12-20

    In the U.S., the average 40 year old plant employs almost eight times as many workers as the typical plant five years or younger. In contrast, surviving Indian plants exhibit little growth in terms of either employment or output. Mexico is intermediate to India and the U.S. in these respects: the average 40 year old Mexican plant employs twice as many workers as an average new plant. This pattern holds across many industries and for formal and informal establishments alike. The divergence in plant dynamics suggests lower investments by Indian and Mexican plants in process efficiency, quality, and in accessing markets at home and abroad. In simple GE models, we find that the difference in life cycle dynamics could lower aggregate manufacturing productivity on the order of 25% in India and Mexico relative to the U.S.
    View Full Paper PDF
  • Working Paper

    The Impact of Plant-Level Resource Reallocations and Technical Progress on U.S. Macroeconomic Growth

    December 2009

    Working Paper Number:

    CES-09-43

    We build up from the plant level an "aggregate(d) Solow residual" by estimating every U.S. manufacturing plant's contribution to the change in aggregate final demand between 1976 and 1996. We decompose these contributions into plant-level resource reallocations and plant-level technical efficiency changes. We allow for 459 different production technologies, one for each 4- digit SIC code. Our framework uses the Petrin and Levinsohn (2008) definition of aggregate productivity growth, which aggregates plant-level changes to changes in aggregate final demand in the presence of imperfect competition and other distortions and frictions. On average, we find that aggregate reallocation made a larger contribution than aggregate technical efficiency growth. Our estimates of the contribution of reallocation range from 1:7% to2:1% per year, while our estimates of the average contribution of aggregate technical efficiency growth range from 0:2% to 0:6% per year. In terms of cyclicality, the aggregate technical efficiency component has a standard deviation that is roughly 50% to 100% larger than that of aggregate total reallocation, pointing to an important role for technical efficiency in macroeconomic fluctuations. Aggregate reallocation is negative in only 3 of the 20 years of our sample, suggesting that the movement of inputs to more highly valued activities on average plays a stabilizing role in manufacturing growth.
    View Full Paper PDF
  • Working Paper

    Misallocation and Manufacturing TFP in China and India

    February 2009

    Working Paper Number:

    CES-09-04

    Resource misallocation can lower aggregate total factor productivity (TFP). We use micro data on manufacturing establishments to quantify the potential extent of misallocation in China and India compared to the U.S. Compared to the U.S., we measure sizable gaps in marginal products of labor and capital across plants within narrowly-defined industries in China and India. When capital and labor are hypothetically reallocated to equalize marginal products to the extent observed in the U.S., we calculate manufacturing TFP gains of 30-50% in China and 40-60% in India.
    View Full Paper PDF
  • Working Paper

    Computer Investment, Computer Networks and Productivity

    January 2005

    Working Paper Number:

    CES-05-01

    Researchers in a large empirical literature find significant relationships between computers and labor productivity, but the estimated size of that relationship varies considerably. In this paper, we estimate the relationships among computers, computer networks, and plant-level productivity in U.S. manufacturing. Using new data on computer investment, we develop a sample with the best proxies for computer and total capital that the data allow us to construct. We find that computer networks and computer inputs have separate, positive, and significant relationships with U.S. manufacturing plant-level productivity. Keywords: computer input; information technology; labor productivity
    View Full Paper PDF
  • Working Paper

    Computer Networks and U.S. Manufacturing Plant Productivity: New Evidence from the CNUS Data

    January 2002

    Working Paper Number:

    CES-02-01

    How do computers affect productivity? Many recent studies argue that using information technology, particularly computers, is a significant source of U.S. productivity growth. The specific mechanism remains elusive. Detailed data on the use of computers and computer networks have been scarce. Plant-level data on the use of computer networks and electronic business processes in the manufacturing sector of the United States were collected for the first time in 1999. Using these data, we find strong links between labor productivity and the presence of computer networks. We find that average labor productivity is higher in plants with networks. Computer networks have a positive and significant effect on plant labor productivity after controlling for multiple factors of production and plant characteristics. Networks increase estimated labor productivity by roughly 5 percent, depending on model specification. Model specifications that account for endogenous computer networks also show a positive and significant relationship. Our work differs from others in several important aspects. First, ours is the first study that directly links the use of computer networks to labor productivity using plant-level data for the entire U.S. manufacturing sector. Second, we extend the existing model relating computers to productivity by including materials as an explicit factor input. Third, we test for possible endogeneity problems associated with the computer network variable.
    View Full Paper PDF
  • Working Paper

    The Impact of Vintage and Survival on Productivity: Evidence from Cohorts of U.S. Manufacturing Plants

    May 2000

    Working Paper Number:

    CES-00-06

    This paper examines the evolution of productivity in U.S. manufacturing plants from 1963 to 1992. We define a 'vintage effect' as the change in productivity of recent cohorts of new plants relative to earlier cohorts of new plants, and a 'survival effect' as the change in productivity of a particular cohort of surviving plants as it ages. The data show that both factors contribute to industry productivity growth, but play offsetting roles in determining a cohort's relative position in the productivity distribution. Recent cohorts enter with significantly higher productivity than earlier entrants did, while surviving cohorts show significant increases in productivity as they age. These two effects roughly offset each other, however, so there is a rough convergence in productivity across cohorts in 1992 and 1987. (JEL Code: D24, L6)
    View Full Paper PDF
  • Working Paper

    Aggregate Productivity Growth: Lessons From Microeconomic Evidence

    September 1998

    Working Paper Number:

    CES-98-12

    In this study we focus on the role of the reallocation of activity across individual producers for aggregate productivity growth. A growing body of empirical analysis yields striking patterns in the behavior of establishment-level reallocation and productivity. Nevertheless, a review of existing studies yields a wide range of findings regarding the contribution of reallocation to aggregate productivity growth. Through our review of existing studies and our own sensitivity analysis, we find that reallocation plays a significant role in the changes in productivity growth at the industry level and that the impact of net entry is disproportionate since entering plants tend to displace less productive exiting plants, even after controlling for overall average growth in productivity. However, an important conclusion of our sensitivity analysis is that the quantitative contribution of reallocation to the aggregate change in productivity is sensitive to the decomposition methodology employed. Our findings also confirm and extend others in the literature that indicate that both learning and selection effects are important in this context. A novel aspect of our analysis is that we have examined the role of reallocation for aggregate productivity growth to a selected set of service sector industries. Our analysis considers the 4-digit industries that form the 3-digit industry automobile repair shops. We found tremendous churning in this industry with extremely large rates of entry and exit. Moreover, we found that productivity growth in the industry is dominated establishment data at Census, the results are quite striking and clearly call for further analysis.
    View Full Paper PDF