Papers Containing Keywords(s): 'associate'
The following papers contain search terms that you selected. From the papers listed below, you can navigate to the PDF, the profile page for that working paper, or see all the working papers written by an author. You can also explore tags, keywords, and authors that occur frequently within these papers.
See Working Papers by Tag(s), Keywords(s), Author(s), or Search Text
Click here to search again
Frequently Occurring Concepts within this Search
John M. Abowd - 3
Viewing papers 1 through 10 of 19
-
Working PaperConnected and Uncooperative: The Effects of Homogenous and Exclusive Social Networks on Survey Response Rates and Nonresponse Bias
January 2024
Working Paper Number:
CES-24-01
Social capital, the strength of people's friendship networks and community ties, has been hypothesized as an important determinant of survey participation. Investigating this hypothesis has been difficult given data constraints. In this paper, we provide insights by investigating how response rates and nonresponse bias in the American Community Survey are correlated with county-level social network data from Facebook. We find that areas of the United States where people have more exclusive and homogenous social networks have higher nonresponse bias and lower response rates. These results provide further evidence that the effects of social capital may not be simply a matter of whether people are socially isolated or not, but also what types of social connections people have and the sociodemographic heterogeneity of their social networks.View Full Paper PDF
-
Working PaperMixed-Effects Methods For Search and Matching Research
September 2023
Working Paper Number:
CES-23-43
We study mixed-effects methods for estimating equations containing person and firm effects. In economics such models are usually estimated using fixed-effects methods. Recent enhancements to those fixed-effects methods include corrections to the bias in estimating the covariance matrix of the person and firm effects, which we also consider.View Full Paper PDF
-
Working PaperManaging Employee Retention Concerns: Evidence from U.S. Census Data
February 2023
Working Paper Number:
CES-23-07
Using Census microdata on 14,000 manufacturing plants, we examine how firms man age employee retention concerns in response to local wage pressure. We validate our measure of employee retention concerns by documenting that plants respond with wage increases, and do so more when the employees' human capital is higher. We doc ument substantial use of non-wage levers in response to retention concerns. Plants shift incentives to increase the likelihood that bonuses can be paid: performance target transparency declines, as does the use of localized performance metrics for bonuses. Furthermore, promotions become more meritocratic, ensuring key employees can be promoted and retained. Lastly, decision-making authority at the plant-level increases, offering more agency to local employees. We find evidence consistent with inequity aversion constraining the response to local wage pressure, and document spillovers in both wage and non-wage reactions across same-firm plants.View Full Paper PDF
-
Working PaperImproving Patent Assignee-Firm Bridge with Web Search Results
August 2022
Working Paper Number:
CES-22-31
This paper constructs a patent assignee-firm longitudinal bridge between U.S. patent assignees and firms using firm-level administrative data from the U.S. Census Bureau. We match granted patents applied between 1976 and 2016 to the U.S. firms recorded in the Longitudinal Business Database (LBD) in the Census Bureau. Building on existing algorithms in the literature, we first use the assignee name, address (state and city), and year information to link the two datasets. We then introduce a novel search-aided algorithm that significantly improves the matching results by 7% and 2.9% at the patent and the assignee level, respectively. Overall, we are able to match 88.2% and 80.1% of all U.S. patents and assignees respectively. We contribute to the existing literature by 1) improving the match rates and quality with the web search-aided algorithm, and 2) providing the longest and longitudinally consistent crosswalk between patent assignees and LBD firms.View Full Paper PDF
-
Working PaperIntroducing the Medical Expenditure Panel Survey-Insurance Component with Administrative Records (MEPS-ICAR): Description, Data Construction Methodology, and Quality Assessment
August 2022
Working Paper Number:
CES-22-29
This report introduces a new dataset, the Medical Expenditure Panel Survey-Insurance Component with Administrative Records (MEPS-ICAR), consisting of MEPS-IC survey data on establishments and their health insurance benefits packages linked to Decennial Census data and administrative tax records on MEPS-IC establishments' workforces. These data include new measures of the characteristics of MEPS-IC establishments' parent firms, employee turnover, the full distribution of MEPS-IC workers' personal and family incomes, the geographic locations where those workers live, and improved workforce demographic detail. Next, this report details the methods used for producing the MEPS-ICAR. Broadly, the linking process begins by matching establishments' parent firms to their workforces using identifiers appearing in tax records. The linking process concludes by matching establishments to their own workforces by identifying the subset of their parent firm's workforce that best matches the expected size, total payroll, and residential geographic distribution of the establishment's workforce. Finally, this report presents statistics characterizing the match rate and the MEPS-ICAR data itself. Key results include that match rates are consistently high (exceeding 90%) across nearly all data subgroups and that the matched data exhibit a reasonable distribution of employment, payroll, and worker commute distances relative to expectations and external benchmarks. Notably, employment measures derived from tax records, but not used in the match itself, correspond with high fidelity to the employment levels that establishments report in the MEPS-IC. Cumulatively, the construction of the MEPS-ICAR significantly expands the capabilities of the MEPS-IC and presents many opportunities for analysts.View Full Paper PDF
-
Working PaperThe impact of manufacturing credentials on earnings and the probability of employment
May 2022
Working Paper Number:
CES-22-15
This paper examines the labor market returns to earning industry-certified credentials in the manufacturing sector. Specifically, we are interested in estimating the impact of a manufacturing credential on wages, probability of employment, and probability of employment specifically in the manufacturing sector post credential attainment. We link students who earned manufacturing credentials to their enrollment and completion records, and then further link them to their IRS tax records for earnings and employment (Form W2 and 1040) and to the American Community Survey and decennial census for demographic information. We present earnings trajectories for workers with credentials by type of credential, industry of employment, age, race and ethnicity, gender, and state. To obtain a more causal estimate of the impact of a credential on earnings, we implement a coarsened exact matching strategy to compare outcomes between otherwise similar people with and without a manufacturing credential. We find that the attainment of a manufacturing industry credential is associated with higher earnings and a higher likelihood of labor market participation when we compare attainers to a group of non-attainers who are otherwise similar.View Full Paper PDF
-
Working PaperAn Evaluation of the Gender Wage Gap Using Linked Survey and Administrative Data
November 2020
Working Paper Number:
CES-20-34
The narrowing of the gender wage gap has slowed in recent decades. However, current estimates show that, among full-time year-round workers, women earn approximately 18 to 20 percent less than men at the median. Women's human capital and labor force characteristics that drive wages increasingly resemble men's, so remaining differences in these characteristics explain less of the gender wage gap now than in the past. As these factors wane in importance, studies show that others like occupational and industrial segregation explain larger portions of the gender wage gap. However, a major limitation of these studies is that the large datasets required to analyze occupation and industry effectively lack measures of labor force experience. This study combines survey and administrative data to analyze and improve estimates of the gender wage gap within detailed occupations, while also accounting for gender differences in work experience. We find a gender wage gap of 18 percent among full-time, year-round workers across 316 detailed occupation categories. We show the wage gap varies significantly by occupation: while wages are at parity in some occupations, gaps are as large as 45 percent in others. More competitive and hazardous occupations, occupations that reward longer hours of work, and those that have a larger proportion of women workers have larger gender wage gaps. The models explain less of the wage gap in occupations with these attributes. Occupational characteristics shape the conditions under which men and women work and we show these characteristics can make for environments that are more or less conducive to gender parity in earnings.View Full Paper PDF
-
Working PaperOccupational Classifications: A Machine Learning Approach
August 2018
Working Paper Number:
CES-18-37
Characterizing the work that people do on their jobs is a longstanding and core issue in labor economics. Traditionally, classification has been done manually. If it were possible to combine new computational tools and administrative wage records to generate an automated crosswalk between job titles and occupations, millions of dollars could be saved in labor costs, data processing could be sped up, data could become more consistent, and it might be possible to generate, without a lag, current information about the changing occupational composition of the labor market. This paper examines the potential to assign occupations to job titles contained in administrative data using automated, machine-learning approaches. We use a new extraordinarily rich and detailed set of data on transactional HR records of large firms (universities) in a relatively narrowly defined industry (public institutions of higher education) to identify the potential for machine-learning approaches to classify occupations.View Full Paper PDF
-
Working PaperDoes Federally-Funded Job Training Work? Nonexperimental Estimates of WIA Training Impacts Using Longitudinal Data on Workers and Firms
January 2018
Working Paper Number:
CES-18-02
We study the job training provided under the US Workforce Investment Act (WIA) to adults and dislocated workers in two states. Our substantive contributions center on impacts estimated non-experimentally using administrative data. These impacts compare WIA participants who do and do not receive training. In addition to the usual impacts on earnings and employment, we link our state data to the Longitudinal Employer-Household Dynamics (LEHD) data at the US Census Bureau, which allows us to estimate impacts on the characteristics of the firms at which participants find employment. We find moderate positive impacts on employment, earnings and desirable firm characteristics for adults, but not for dislocated workers. Our primary methodological contribution consists of assessing the value of the additional conditioning information provided by the LEHD relative to the data available in state Unemployment Insurance (UI) earnings records. We find that value to be zero.View Full Paper PDF
-
Working PaperFile Matching with Faulty Continuous Matching Variables
January 2017
Working Paper Number:
CES-17-45
We present LFCMV, a Bayesian file linking methodology designed to link records using continuous matching variables in situations where we do not expect values of these matching variables to agree exactly across matched pairs. The method involves a linking model for the distance between the matching variables of records in one file and the matching variables of their linked records in the second. This linking model is conditional on a vector indicating the links. We specify a mixture model for the distance component of the linking model, as this latent structure allows the distance between matching variables in linked pairs to vary across types of linked pairs. Finally, we specify a model for the linking vector. We describe the Gibbs sampling algorithm for sampling from the posterior distribution of this linkage model and use artificial data to illustrate model performance. We also introduce a linking application using public survey information and data from the U.S. Census of Manufactures and use LFCMV to link the records.View Full Paper PDF