CREAT: Census Research Exploration and Analysis Tool

Towards Unrestricted Public Use Business Microdata: The Synthetic Longitudinal Business Database

February 2011

Abstract

In most countries, national statistical agencies do not release establishment-level business microdata, because doing so represents too large a risk to establishments\' confidentiality. One approach with the potential for overcoming these risks is to release synthetic data; that is, the released establishment data are simulated from statistical models designed to mimic the distributions of the underlying real microdata. In this article, we describe an application of this strategy to create a public use file for the Longitudinal Business Database, an annual economic census of establishments in the United States comprising more than 20 million records dating back to 1976. The U.S. Bureau of the Census and the Internal Revenue Service recently approved the release of these synthetic microdata for public use, making the synthetic Longitudinal Business Database the first-ever business microdata set publicly released in the United States. We describe how we created the synthetic data, evaluated analytical validity, and assessed disclosure risk.

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
data, statistical, enterprise, database, report, microdata, survey, statistical agencies, disclosure, agency, confidentiality, information, financial, incorporated, employment data, privacy, business data, discrepancy, establishments data, record, census business, datasets, store, statistical disclosure, publicly

Tags Tags are automatically generated using a pretrained language model from spaCy, which excels at several tasks, including entity tagging.

The model is able to label words and phrases by part-of-speech, including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are identified to contain references to specific institutions, datasets, and other organizations.
:
Internal Revenue Service, Standard Industrial Classification, Longitudinal Research Database, National Science Foundation, County Business Patterns, Company Organization Survey, Establishment Micro Properties, Organization for Economic Cooperation and Development, Longitudinal Business Database, Bureau of Labor, COMPUSTAT, Chicago Census Research Data Center, Survey of Income and Program Participation, Economic Census, Research Data Center, North American Industry Classification System, Business Register, Special Sworn Status, Local Employment Dynamics, Business Dynamics Statistics

Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with 🔥 are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'Towards Unrestricted Public Use Business Microdata: The Synthetic Longitudinal Business Database' are listed below in order of similarity.