In most countries, national statistical agencies do not release establishment-level business microdata, because doing so represents too large a risk to establishments' confidentiality. Agencies potentially can manage these risks by releasing synthetic microdata, i.e., individual establishment records simulated from statistical models de- signed to mimic the joint distribution of the underlying observed data. Previously, we used this approach to generate a public-use version'now available for public use'of the U. S. Census Bureau's Longitudinal Business Database (LBD), a longitudinal cen- sus of establishments dating back to 1976. While the synthetic LBD has proven to be a useful product, we now seek to improve and expand it by using new synthesis models and adding features. This article describes our efforts to create the second generation of the SynLBD, including synthesis procedures that we believe could be replicated in other contexts.
-
Towards Unrestricted Public Use Business Microdata: The Synthetic Longitudinal Business Database
February 2011
Working Paper Number:
CES-11-04
In most countries, national statistical agencies do not release establishment-level business microdata, because doing so represents too large a risk to establishments\' confidentiality. One approach with the potential for overcoming these risks is to release synthetic data; that is, the released establishment data are simulated from statistical models designed to mimic the distributions of the underlying real microdata. In this article, we describe an application of this strategy to create a public use file for the Longitudinal Business Database, an annual economic census of establishments in the United States comprising more than 20 million records dating back to 1976. The U.S. Bureau of the Census and the Internal Revenue Service recently approved the release of these synthetic microdata for public use, making the synthetic Longitudinal Business Database the first-ever business microdata set publicly released in the United States. We describe how we created the synthetic data, evaluated analytical validity, and assessed disclosure risk.
View Full
Paper PDF
-
A FIRST STEP TOWARDS A GERMAN SYNLBD: CONSTRUCTING A GERMAN LONGITUDINAL BUSINESS DATABASE
February 2014
Working Paper Number:
CES-14-13
One major criticism against the use of synthetic data has been that the efforts necessary to generate useful synthetic data are so in- tense that many statistical agencies cannot afford them. We argue many lessons in this evolving field have been learned in the early years of synthetic data generation, and can be used in the development of new synthetic data products, considerably reducing the required in- vestments. The final goal of the project described in this paper will be to evaluate whether synthetic data algorithms developed in the U.S. to generate a synthetic version of the Longitudinal Business Database (LBD) can easily be transferred to generate a similar data product for other countries. We construct a German data product with infor- mation comparable to the LBD - the German Longitudinal Business Database (GLBD) - that is generated from different administrative sources at the Institute for Employment Research, Germany. In a fu- ture step, the algorithms developed for the synthesis of the LBD will be applied to the GLBD. Extensive evaluations will illustrate whether the algorithms provide useful synthetic data without further adjustment. The ultimate goal of the project is to provide access to multiple synthetic datasets similar to the SynLBD at Cornell to enable comparative studies between countries. The Synthetic GLBD is a first step towards that goal.
View Full
Paper PDF
-
LOOKING BACK ON THREE YEARS OF USING THE SYNTHETIC LBD BETA
February 2014
Working Paper Number:
CES-14-11
Distributions of business data are typically much more skewed than those for household or individual data and public knowledge of the underlying units is greater. As a results, national statistical offices (NSOs) rarely release establishment or firm-level business microdata due to the risk to respondent confidentiality. One potential approach for overcoming these risks is to release synthetic data where the establishment data are simulated from statistical models designed to mimic the distributions of the real underlying microdata. The US Census Bureau's Center for Economic Studies in collaboration with Duke University, the National Institute of Statistical Sciences, and Cornell University made available a synthetic public use file for the Longitudinal Business Database (LBD) comprising more than 20 million records for all business establishment with paid employees dating back to 1976. The resulting product, dubbed the SynLBD, was released in 2010 and is the first-ever comprehensive business microdata set publicly released in the United States including data on establishments employment and payroll, birth and death years, and industrial classification. This pa- per documents the scope of projects that have requested and used the SynLBD.
View Full
Paper PDF
-
Using Partially Synthetic Microdata to Protect Sensitive Cells in Business Statistics
February 2016
Working Paper Number:
CES-16-10
We describe and analyze a method that blends records from both observed and synthetic microdata into public-use tabulations on establishment statistics. The resulting tables use synthetic data only in potentially sensitive cells. We describe different algorithms, and present preliminary results when applied to the Census Bureau's Business Dynamics Statistics and Synthetic Longitudinal Business Database, highlighting accuracy and protection afforded by the method when compared to existing public-use tabulations (with suppressions).
View Full
Paper PDF
-
Redesigning the Longitudinal Business Database
May 2021
Working Paper Number:
CES-21-08
In this paper we describe the U.S. Census Bureau's redesign and production implementation of the Longitudinal Business Database (LBD) first introduced by Jarmin and Miranda (2002). The LBD is used to create the Business Dynamics Statistics (BDS), tabulations describing the entry, exit, expansion, and contraction of businesses. The new LBD and BDS also incorporate information formerly provided by the Statistics of U.S. Businesses program, which produced similar year-to-year measures of employment and establishment flows. We describe in detail how the LBD is created from curation of the input administrative data, longitudinal matching, retiming of economic census-year births and deaths, creation of vintage consistent industry codes and noise factors, and the creation and cleaning of each year of LBD data. This documentation is intended to facilitate the proper use and understanding of the data by both researchers with approved projects accessing the LBD microdata and those using the BDS tabulations.
View Full
Paper PDF
-
Distribution Preserving Statistical Disclosure Limitation
September 2006
Working Paper Number:
tp-2006-04
One approach to limiting disclosure risk in public-use microdata is to release multiply-imputed,
partially synthetic data sets. These are data on actual respondents, but with confidential data
replaced by multiply-imputed synthetic values. A mis-specified imputation model can invalidate
inferences because the distribution of synthetic data is completely determined by the model used
to generate them. We present two practical methods of generating synthetic values when the imputer
has only limited information about the true data generating process. One is applicable when
the true likelihood is known up to a monotone transformation. The second requires only limited
knowledge of the true likelihood, but nevertheless preserves the conditional distribution of the confidential
data, up to sampling error, on arbitrary subdomains. Our method maximizes data utility
and minimizes incremental disclosure risk up to posterior uncertainty in the imputation model and
sampling error in the estimated transformation. We validate the approach with a simulation and
application to a large linked employer-employee database.
View Full
Paper PDF
-
R&D, Attrition and Multiple Imputation in BRDIS
January 2017
Working Paper Number:
CES-17-13
Multiple imputation in business establishment surveys like BRDIS, an annual business survey in which some companies are sampled every year or multiple years, may enhance the estimates of total R&D in addition to helping researchers estimate models with subpopulations of small sample size. Considering a panel of BRDIS companies throughout the years 2008 to 2013 linked to LBD data, this paper uses the conclusions obtained with missing data visualization and other explorations to come up with a strategy to conduct multiple imputation appropriate to address the item nonresponse in R&D expenditures. Because survey design characteristics are behind much of the item and unit nonresponse, multiple imputation of missing data in BRDIS changes the estimates of total R&D significantly and alters the conclusions reached by models of the determinants of R&D investment obtained with complete case analysis.
View Full
Paper PDF
-
Dynamically Consistent Noise Infusion and Partially Synthetic Data as Confidentiality Protection Measures for Related Time Series
July 2012
Working Paper Number:
CES-12-13
The Census Bureau's Quarterly Workforce Indicators (QWI) provide detailed quarterly statistics on employment measures such as worker and job flows, tabulated by worker characteristics in various combinations. The data are released for several levels of NAICS industries and geography, the lowest aggregation of the latter being counties. Disclosure avoidance methods are required to protect the information about individuals and businesses that contribute to the underlying data. The QWI disclosure avoidance mechanism we describe here relies heavily on the use of noise infusion through a permanent multiplicative noise distortion factor, used for magnitudes, counts, differences and ratios. There is minimal suppression and no complementary suppressions. To our knowledge, the release in 2003 of the QWI was the first large-scale use of noise infusion in any official statistical product. We show that the released statistics are analytically valid along several critical dimensions { measures are unbiased and time series properties are preserved. We provide an analysis of the degree to which confidentiality is protected. Furthermore, we show how the judicious use of synthetic data, injected into the tabulation process, can completely eliminate suppressions, maintain analytical validity, and increase the protection of the underlying confidential data.
View Full
Paper PDF
-
A Long View of Employment Growth and Firm Dynamics in the United States: Importers vs. Exporters vs. Non-Traders
December 2021
Working Paper Number:
CES-21-38
The first experimental product from the U.S. Census Bureau's Business Dynamics Statistics (BDS) program -- BDS-Goods Traders -- provides annual, public-use measures of business dynamics by four mutually exclusive goods-trading classifications: exporter only, importer only, exporter and importer, and non-trader. The BDS-Goods Traders offers a comprehensive view of employment growth at firms associated with goods trading activities in the United States from 1992-2019. We highlight three patterns. First, employment is skewed towards goods traders in several ways. Only 6% of all U.S. firms are goods traders but they account for half of total employment. Moreover, 80% of large firms and 70% of older firms are goods traders. Second, exporter-importer firms represent 70% of manufacturing employment and over half of employment in services-producing industries (management, retail, transportation, utilities, and wholesale). Third, goods-traders exhibit higher net job creation rates than non-traders controlling for firm size, age, and sector. Goods traders contribution to total job creation grows over time, rising to more than half after 2008.
View Full
Paper PDF
-
EXPANDING THE ROLE OF SYNTHETIC DATA AT THE U.S. CENSUS BUREAU
February 2014
Working Paper Number:
CES-14-10
National Statistical offices (NSOs) create official statistics from data collected from survey respondents, government administrative records and other sources. The raw source data is usually considered to be confidential. In the case of the U.S. Census Bureau, confidentiality of survey and administrative records microdata is mandated by statute, and this mandate to protect confidentiality is often at odds with the needs of users to extract as much information from the data as possible. Traditional disclosure protection techniques result in official data products that do not fully utilize the information content of the underlying microdata. Typically, these products take the form of simple aggregate tabulations. In a few cases anonymized public- use micro samples are made available, but these face a growing risk of re-identification by the increasing amounts of information about individuals and firms available in the public domain. One approach for overcoming these risks is to release products based on synthetic data where values are simulated from statistical models designed to mimic the (joint) distributions of the underlying microdata. We discuss re- cent Census Bureau work to develop and deploy such products. We discuss the benefits and challenges involved with extending the scope of synthetic data products in official statistics.
View Full
Paper PDF