A FIRST STEP TOWARDS A GERMAN SYNLBD: CONSTRUCTING A GERMAN LONGITUDINAL BUSINESS DATABASE
February 2014
Working Paper Number:
CES-14-13
Abstract
Document Tags and Keywords
Keywords
Keywords are automatically generated using KeyBERT, a powerful and innovative
keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant
keywords.
By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the
text, highlighting the most significant topics and trends. This approach not only enhances searchability but
provides connections that go beyond potentially domain-specific author-defined keywords.
:
data,
statistical,
database,
industrial,
microdata,
survey,
agency,
model,
employ,
sector,
longitudinal,
imputation,
development,
record,
inference,
datasets
Tags
Tags are automatically generated using a pretrained language model from spaCy, which excels at
several tasks, including entity tagging.
The model is able to label words and phrases by part-of-speech,
including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are
identified to contain references to specific institutions, datasets, and other organizations.
:
Standard Industrial Classification,
National Science Foundation,
County Business Patterns,
Longitudinal Business Database,
Cornell University,
North American Industry Classification System,
Longitudinal Employer Household Dynamics,
Business Register,
Census Bureau Business Dynamics Statistics
Similar Working Papers
Similarity between working papers are determined by an unsupervised neural
network model
know as Doc2Vec.
Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the
capture of semantic meaning in a way that relates to the context of words within the document. The model learns to
associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as
document classification, clustering, and similarity detection by preserving the order and structure of words. The
document vectors are compared using cosine similarity/distance to determine the most similar working papers.
Papers identified with 🔥 are in the top 20% of similarity.
The 10 most similar working papers to the working paper 'A FIRST STEP TOWARDS A GERMAN SYNLBD: CONSTRUCTING A GERMAN LONGITUDINAL BUSINESS DATABASE' are listed below in order of similarity.
-
Working PaperIMPROVING THE SYNTHETIC LONGITUDINAL BUSINESS DATABASE🔥
February 2014
Working Paper Number:
CES-14-12
In most countries, national statistical agencies do not release establishment-level business microdata, because doing so represents too large a risk to establishments' confidentiality. Agencies potentially can manage these risks by releasing synthetic microdata, i.e., individual establishment records simulated from statistical models de- signed to mimic the joint distribution of the underlying observed data. Previously, we used this approach to generate a public-use version'now available for public use'of the U. S. Census Bureau's Longitudinal Business Database (LBD), a longitudinal cen- sus of establishments dating back to 1976. While the synthetic LBD has proven to be a useful product, we now seek to improve and expand it by using new synthesis models and adding features. This article describes our efforts to create the second generation of the SynLBD, including synthesis procedures that we believe could be replicated in other contexts.View Full Paper PDF
-
Working PaperTowards Unrestricted Public Use Business Microdata: The Synthetic Longitudinal Business Database🔥
February 2011
Working Paper Number:
CES-11-04
In most countries, national statistical agencies do not release establishment-level business microdata, because doing so represents too large a risk to establishments\' confidentiality. One approach with the potential for overcoming these risks is to release synthetic data; that is, the released establishment data are simulated from statistical models designed to mimic the distributions of the underlying real microdata. In this article, we describe an application of this strategy to create a public use file for the Longitudinal Business Database, an annual economic census of establishments in the United States comprising more than 20 million records dating back to 1976. The U.S. Bureau of the Census and the Internal Revenue Service recently approved the release of these synthetic microdata for public use, making the synthetic Longitudinal Business Database the first-ever business microdata set publicly released in the United States. We describe how we created the synthetic data, evaluated analytical validity, and assessed disclosure risk.View Full Paper PDF
-
Working PaperLOOKING BACK ON THREE YEARS OF USING THE SYNTHETIC LBD BETA🔥
February 2014
Working Paper Number:
CES-14-11
Distributions of business data are typically much more skewed than those for household or individual data and public knowledge of the underlying units is greater. As a results, national statistical offices (NSOs) rarely release establishment or firm-level business microdata due to the risk to respondent confidentiality. One potential approach for overcoming these risks is to release synthetic data where the establishment data are simulated from statistical models designed to mimic the distributions of the real underlying microdata. The US Census Bureau's Center for Economic Studies in collaboration with Duke University, the National Institute of Statistical Sciences, and Cornell University made available a synthetic public use file for the Longitudinal Business Database (LBD) comprising more than 20 million records for all business establishment with paid employees dating back to 1976. The resulting product, dubbed the SynLBD, was released in 2010 and is the first-ever comprehensive business microdata set publicly released in the United States including data on establishments employment and payroll, birth and death years, and industrial classification. This pa- per documents the scope of projects that have requested and used the SynLBD.View Full Paper PDF
-
Working PaperUsing Partially Synthetic Microdata to Protect Sensitive Cells in Business Statistics🔥
February 2016
Working Paper Number:
CES-16-10
We describe and analyze a method that blends records from both observed and synthetic microdata into public-use tabulations on establishment statistics. The resulting tables use synthetic data only in potentially sensitive cells. We describe different algorithms, and present preliminary results when applied to the Census Bureau's Business Dynamics Statistics and Synthetic Longitudinal Business Database, highlighting accuracy and protection afforded by the method when compared to existing public-use tabulations (with suppressions).View Full Paper PDF
-
Working PaperRedesigning the Longitudinal Business Database
May 2021
Working Paper Number:
CES-21-08
In this paper we describe the U.S. Census Bureau's redesign and production implementation of the Longitudinal Business Database (LBD) first introduced by Jarmin and Miranda (2002). The LBD is used to create the Business Dynamics Statistics (BDS), tabulations describing the entry, exit, expansion, and contraction of businesses. The new LBD and BDS also incorporate information formerly provided by the Statistics of U.S. Businesses program, which produced similar year-to-year measures of employment and establishment flows. We describe in detail how the LBD is created from curation of the input administrative data, longitudinal matching, retiming of economic census-year births and deaths, creation of vintage consistent industry codes and noise factors, and the creation and cleaning of each year of LBD data. This documentation is intended to facilitate the proper use and understanding of the data by both researchers with approved projects accessing the LBD microdata and those using the BDS tabulations.View Full Paper PDF
-
Working PaperDynamically Consistent Noise Infusion and Partially Synthetic Data as Confidentiality Protection Measures for Related Time Series
July 2012
Working Paper Number:
CES-12-13
The Census Bureau's Quarterly Workforce Indicators (QWI) provide detailed quarterly statistics on employment measures such as worker and job flows, tabulated by worker characteristics in various combinations. The data are released for several levels of NAICS industries and geography, the lowest aggregation of the latter being counties. Disclosure avoidance methods are required to protect the information about individuals and businesses that contribute to the underlying data. The QWI disclosure avoidance mechanism we describe here relies heavily on the use of noise infusion through a permanent multiplicative noise distortion factor, used for magnitudes, counts, differences and ratios. There is minimal suppression and no complementary suppressions. To our knowledge, the release in 2003 of the QWI was the first large-scale use of noise infusion in any official statistical product. We show that the released statistics are analytically valid along several critical dimensions { measures are unbiased and time series properties are preserved. We provide an analysis of the degree to which confidentiality is protected. Furthermore, we show how the judicious use of synthetic data, injected into the tabulation process, can completely eliminate suppressions, maintain analytical validity, and increase the protection of the underlying confidential data.View Full Paper PDF
-
Working PaperDistribution Preserving Statistical Disclosure Limitation
September 2006
Working Paper Number:
tp-2006-04
One approach to limiting disclosure risk in public-use microdata is to release multiply-imputed, partially synthetic data sets. These are data on actual respondents, but with confidential data replaced by multiply-imputed synthetic values. A mis-specified imputation model can invalidate inferences because the distribution of synthetic data is completely determined by the model used to generate them. We present two practical methods of generating synthetic values when the imputer has only limited information about the true data generating process. One is applicable when the true likelihood is known up to a monotone transformation. The second requires only limited knowledge of the true likelihood, but nevertheless preserves the conditional distribution of the confidential data, up to sampling error, on arbitrary subdomains. Our method maximizes data utility and minimizes incremental disclosure risk up to posterior uncertainty in the imputation model and sampling error in the estimated transformation. We validate the approach with a simulation and application to a large linked employer-employee database.View Full Paper PDF
-
Working PaperLEHD Infrastructure files in the Census RDC - Overview
June 2014
Working Paper Number:
CES-14-26
The Longitudinal Employer-Household Dynamics (LEHD) Program at the U.S. Census Bureau, with the support of several national research agencies, maintains a set of infrastructure files using administrative data provided by state agencies, enhanced with information from other administrative data sources, demographic and economic (business) surveys and censuses. The LEHD Infrastructure Files provide a detailed and comprehensive picture of workers, employers, and their interaction in the U.S. economy. This document describes the structure and content of the 2011 Snapshot of the LEHD Infrastructure files as they are made available in the Census Bureaus secure and restricted-access Research Data Center network. The document attempts to provide a comprehensive description of all researcher-accessible files, of their creation, and of any modifcations made to the files to facilitate researcher access.View Full Paper PDF
-
Working PaperLEHD Data Documentation LEHD-OVERVIEW-S2008-rev1
December 2011
Working Paper Number:
CES-11-43
View Full Paper PDF
-
Working PaperSynthetic Data and Confidentiality Protection
September 2003
Working Paper Number:
tp-2003-10
View Full Paper PDF